在c#中有一个简单的方法来创建一个数字的序数吗?例如:

1返回第1位 2返回第2 3返回第3 等

这是否可以通过String.Format()来完成,或者是否有可用的函数来完成?


当前回答

编辑:正如YM_Industries在评论中指出的那样,samjudson的答案确实适用于超过1000的数字,nickf的评论似乎已经消失了,我不记得我看到的问题是什么。留下这个答案在这里比较时间。

正如nickf在评论中指出的(编辑:现在丢失了),很多数字> 999都不起作用。

以下是一个基于samjudson的公认答案的修改版本。

public static String GetOrdinal(int i)
{
    String res = "";

    if (i > 0)
    {
        int j = (i - ((i / 100) * 100));

        if ((j == 11) || (j == 12) || (j == 13))
            res = "th";
        else
        {
            int k = i % 10;

            if (k == 1)
                res = "st";
            else if (k == 2)
                res = "nd";
            else if (k == 3)
                res = "rd";
            else
                res = "th";
        }
    }

    return i.ToString() + res;
}

同样,Shahzad Qureshi使用字符串操作的回答也很好,但它确实有性能损失。为了生成大量这样的类型,LINQPad示例程序使字符串版本比整数版本慢6-7倍(尽管您必须生成很多才会注意到)。

LINQPad例子:

void Main()
{
    "Examples:".Dump();

    foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 10000013 })
        Stuff.GetOrdinal(i).Dump();

    String s;

    System.Diagnostics.Stopwatch sw = System.Diagnostics.Stopwatch.StartNew();

    for(int iter = 0; iter < 100000; iter++)
        foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 1000013 })
            s = Stuff.GetOrdinal(i);

    "Integer manipulation".Dump();
    sw.Elapsed.Dump();

    sw.Restart();

    for(int iter = 0; iter < 100000; iter++)
        foreach(int i in new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 113, 122, 201, 202, 211, 212, 2013, 1000003, 1000013 })
            s = (i.ToString() + Stuff.GetOrdinalSuffix(i));

    "String manipulation".Dump();
    sw.Elapsed.Dump();
}

public class Stuff
{
        // Use integer manipulation
        public static String GetOrdinal(int i)
        {
                String res = "";

                if (i > 0)
                {
                        int j = (i - ((i / 100) * 100));

                        if ((j == 11) || (j == 12) || (j == 13))
                                res = "th";
                        else
                        {
                                int k = i % 10;

                                if (k == 1)
                                        res = "st";
                                else if (k == 2)
                                        res = "nd";
                                else if (k == 3)
                                        res = "rd";
                                else
                                        res = "th";
                        }
                }

                return i.ToString() + res;
        }

        // Use string manipulation
        public static string GetOrdinalSuffix(int num)
        {
                if (num.ToString().EndsWith("11")) return "th";
                if (num.ToString().EndsWith("12")) return "th";
                if (num.ToString().EndsWith("13")) return "th";
                if (num.ToString().EndsWith("1")) return "st";
                if (num.ToString().EndsWith("2")) return "nd";
                if (num.ToString().EndsWith("3")) return "rd";
                return "th";
        }
}

其他回答

杰西版本的斯图和萨姆贾德森版本的我的版本:)

包含单元测试,以显示接受的答案是不正确的,当数字< 1

/// <summary>
/// Get the ordinal value of positive integers.
/// </summary>
/// <remarks>
/// Only works for english-based cultures.
/// Code from: http://stackoverflow.com/questions/20156/is-there-a-quick-way-to-create-ordinals-in-c/31066#31066
/// With help: http://www.wisegeek.com/what-is-an-ordinal-number.htm
/// </remarks>
/// <param name="number">The number.</param>
/// <returns>Ordinal value of positive integers, or <see cref="int.ToString"/> if less than 1.</returns>
public static string Ordinal(this int number)
{
    const string TH = "th";
    string s = number.ToString();

    // Negative and zero have no ordinal representation
    if (number < 1)
    {
        return s;
    }

    number %= 100;
    if ((number >= 11) && (number <= 13))
    {
        return s + TH;
    }

    switch (number % 10)
    {
        case 1: return s + "st";
        case 2: return s + "nd";
        case 3: return s + "rd";
        default: return s + TH;
    }
}

[Test]
public void Ordinal_ReturnsExpectedResults()
{
    Assert.AreEqual("-1", (1-2).Ordinal());
    Assert.AreEqual("0", 0.Ordinal());
    Assert.AreEqual("1st", 1.Ordinal());
    Assert.AreEqual("2nd", 2.Ordinal());
    Assert.AreEqual("3rd", 3.Ordinal());
    Assert.AreEqual("4th", 4.Ordinal());
    Assert.AreEqual("5th", 5.Ordinal());
    Assert.AreEqual("6th", 6.Ordinal());
    Assert.AreEqual("7th", 7.Ordinal());
    Assert.AreEqual("8th", 8.Ordinal());
    Assert.AreEqual("9th", 9.Ordinal());
    Assert.AreEqual("10th", 10.Ordinal());
    Assert.AreEqual("11th", 11.Ordinal());
    Assert.AreEqual("12th", 12.Ordinal());
    Assert.AreEqual("13th", 13.Ordinal());
    Assert.AreEqual("14th", 14.Ordinal());
    Assert.AreEqual("20th", 20.Ordinal());
    Assert.AreEqual("21st", 21.Ordinal());
    Assert.AreEqual("22nd", 22.Ordinal());
    Assert.AreEqual("23rd", 23.Ordinal());
    Assert.AreEqual("24th", 24.Ordinal());
    Assert.AreEqual("100th", 100.Ordinal());
    Assert.AreEqual("101st", 101.Ordinal());
    Assert.AreEqual("102nd", 102.Ordinal());
    Assert.AreEqual("103rd", 103.Ordinal());
    Assert.AreEqual("104th", 104.Ordinal());
    Assert.AreEqual("110th", 110.Ordinal());
    Assert.AreEqual("111th", 111.Ordinal());
    Assert.AreEqual("112th", 112.Ordinal());
    Assert.AreEqual("113th", 113.Ordinal());
    Assert.AreEqual("114th", 114.Ordinal());
    Assert.AreEqual("120th", 120.Ordinal());
    Assert.AreEqual("121st", 121.Ordinal());
    Assert.AreEqual("122nd", 122.Ordinal());
    Assert.AreEqual("123rd", 123.Ordinal());
    Assert.AreEqual("124th", 124.Ordinal());
}

虽然这里有很多很好的答案,但我想还有另一个答案的空间,这一次是基于模式匹配,如果不是为了其他任何东西,那么至少是为了有争议的可读性

public static string Ordinals1(this int number)
{
    switch (number)
    {
        case int p when p % 100 == 11:
        case int q when q % 100 == 12:
        case int r when r % 100 == 13:
            return $"{number}th";
        case int p when p % 10 == 1:
            return $"{number}st";
        case int p when p % 10 == 2:
            return $"{number}nd";
        case int p when p % 10 == 3:
            return $"{number}rd";
        default:
            return $"{number}th";
    }
}

这个溶液有什么特别之处呢?我只是为各种其他解决方案添加了一些性能考虑因素

坦率地说,我怀疑性能对于这种特定的场景真的很重要(谁真的需要数百万个数字的序数呢),但至少它提供了一些可供考虑的比较……

100万件供参考(当然,根据机器规格,您的米粒可能会有所不同) 使用模式匹配和划分(这个答案) ~ 622毫秒 使用模式匹配和字符串(这个答案) ~ 1967毫秒 有两个开关和划分(接受答案) ~ 637毫秒 用一个开关和除法(另一个答案) ~ 725毫秒

void Main()
{
    var timer = new Stopwatch();
    var numbers = Enumerable.Range(1, 1000000).ToList();

    // 1
    timer.Reset();
    timer.Start();
    var results1 = numbers.Select(p => p.Ordinals1()).ToList();
    timer.Stop();
    timer.Elapsed.TotalMilliseconds.Dump("with pattern matching and divisions");

    // 2
    timer.Reset();
    timer.Start();
    var results2 = numbers.Select(p => p.Ordinals2()).ToList();
    timer.Stop();
    timer.Elapsed.TotalMilliseconds.Dump("with pattern matching and strings");

    // 3
    timer.Reset();
    timer.Start();
    var results3 = numbers.Select(p => p.Ordinals3()).ToList();
    timer.Stop();
    timer.Elapsed.TotalMilliseconds.Dump("with two switches and divisons");
    
    // 4
    timer.Reset();
    timer.Start();
    var results4 = numbers.Select(p => p.Ordinals4()).ToList();
    timer.Stop();
    timer.Elapsed.TotalMilliseconds.Dump("with one switche and divisons");
}

public static class Extensions
{
    public static string Ordinals1(this int number)
    {
        switch (number)
        {
            case int p when p % 100 == 11:
            case int q when q % 100 == 12:
            case int r when r % 100 == 13:
                return $"{number}th";
            case int p when p % 10 == 1:
                return $"{number}st";
            case int p when p % 10 == 2:
                return $"{number}nd";
            case int p when p % 10 == 3:
                return $"{number}rd";
            default:
                return $"{number}th";
        }
    }

    public static string Ordinals2(this int number)
    {
        var text = number.ToString();
        switch (text)
        {
            case string p when p.EndsWith("11"):
                return $"{number}th";
            case string p when p.EndsWith("12"):
                return $"{number}th";
            case string p when p.EndsWith("13"):
                return $"{number}th";
            case string p when p.EndsWith("1"):
                return $"{number}st";
            case string p when p.EndsWith("2"):
                return $"{number}nd";
            case string p when p.EndsWith("3"):
                return $"{number}rd";
            default:
                return $"{number}th";
        }
    }

    public static string Ordinals3(this int number)
    {
        switch (number % 100)
        {
            case 11:
            case 12:
            case 13:
                return $"{number}th";
        }

        switch (number % 10)
        {
            case 1:
                return $"{number}st";
            case 2:
                return $"{number}nd";
            case 3:
                return $"{number}rd";
            default:
                return $"{number}th";
        }
    }

    public static string Ordinals4(this int number)
    {
        var ones = number % 10;
        var tens = Math.Floor(number / 10f) % 10;
        if (tens == 1)
        {
            return $"{number}th";
        }

        switch (ones)
        {
            case 1:
                return $"{number}th";
            case 2:
                return $"{number}nd";
            case 3:
                return $"{number}rd";
            default:
                return $"{number}th";
        }
    }
}

public static string OrdinalSuffix(int ordinal)
{
    //Because negatives won't work with modular division as expected:
    var abs = Math.Abs(ordinal); 

    var lastdigit = abs % 10; 

    return 
        //Catch 60% of cases (to infinity) in the first conditional:
        lastdigit > 3 || lastdigit == 0 || (abs % 100) - lastdigit == 10 ? "th" 
            : lastdigit == 1 ? "st" 
            : lastdigit == 2 ? "nd" 
            : "rd";
}

要求“减少冗余”版本的samjudson的回答…

public static string AddOrdinal(int number)
{
    if (number <= 0) return number.ToString();

    string GetIndicator(int num)
    {
        switch (num % 100)
        {
            case 11:
            case 12:
            case 13:
                return "th";
        }

        switch (num % 10)
        {
            case 1:
                return "st";
            case 2:
                return "nd";
            case 3:
                return "rd";
            default:
                return "th";
        }
    }

    return number + GetIndicator(number);
}

我使用这个扩展类:

public static class Int32Extensions
{
    public static string ToOrdinal(this int i)
    {
        return (i + "th")
            .Replace("1th", "1st")
            .Replace("2th", "2nd")
            .Replace("3th", "3rd");
    }
}