我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

关于J.F. Sebastian给出的解决方案:

def chunker(iterable, chunksize):
    return zip(*[iter(iterable)]*chunksize)

它很聪明,但有一个缺点——总是返回元组。如何获得字符串代替? 当然,你可以写“.join(chunker(…))”,但无论如何都要构造临时元组。

你可以通过编写自己的zip来摆脱临时元组,就像这样:

class IteratorExhausted(Exception):
    pass

def translate_StopIteration(iterable, to=IteratorExhausted):
    for i in iterable:
        yield i
    raise to # StopIteration would get ignored because this is generator,
             # but custom exception can leave the generator.

def custom_zip(*iterables, reductor=tuple):
    iterators = tuple(map(translate_StopIteration, iterables))
    while True:
        try:
            yield reductor(next(i) for i in iterators)
        except IteratorExhausted: # when any of iterators get exhausted.
            break

Then

def chunker(data, size, reductor=tuple):
    return custom_zip(*[iter(data)]*size, reductor=reductor)

使用示例:

>>> for i in chunker('12345', 2):
...     print(repr(i))
...
('1', '2')
('3', '4')
>>> for i in chunker('12345', 2, ''.join):
...     print(repr(i))
...
'12'
'34'

其他回答

因为没有人提到它,这里有一个zip()解决方案:

>>> def chunker(iterable, chunksize):
...     return zip(*[iter(iterable)]*chunksize)

只有当你的序列长度总是能被块大小整除时,它才有效,或者如果后面的块不能整除,你就不关心它。

例子:

>>> s = '1234567890'
>>> chunker(s, 3)
[('1', '2', '3'), ('4', '5', '6'), ('7', '8', '9')]
>>> chunker(s, 4)
[('1', '2', '3', '4'), ('5', '6', '7', '8')]
>>> chunker(s, 5)
[('1', '2', '3', '4', '5'), ('6', '7', '8', '9', '0')]

或者使用itertools。返回一个迭代器而不是一个列表:

>>> from itertools import izip
>>> def chunker(iterable, chunksize):
...     return izip(*[iter(iterable)]*chunksize)

填充可以固定使用@ΤΖΩΤΖΙΟΥ的答案:

>>> from itertools import chain, izip, repeat
>>> def chunker(iterable, chunksize, fillvalue=None):
...     it   = chain(iterable, repeat(fillvalue, chunksize-1))
...     args = [it] * chunksize
...     return izip(*args)

使用小的函数和东西真的不吸引我;我更喜欢使用切片:

data = [...]
chunk_size = 10000 # or whatever
chunks = [data[i:i+chunk_size] for i in xrange(0,len(data),chunk_size)]
for chunk in chunks:
    ...

关于J.F. Sebastian给出的解决方案:

def chunker(iterable, chunksize):
    return zip(*[iter(iterable)]*chunksize)

它很聪明,但有一个缺点——总是返回元组。如何获得字符串代替? 当然,你可以写“.join(chunker(…))”,但无论如何都要构造临时元组。

你可以通过编写自己的zip来摆脱临时元组,就像这样:

class IteratorExhausted(Exception):
    pass

def translate_StopIteration(iterable, to=IteratorExhausted):
    for i in iterable:
        yield i
    raise to # StopIteration would get ignored because this is generator,
             # but custom exception can leave the generator.

def custom_zip(*iterables, reductor=tuple):
    iterators = tuple(map(translate_StopIteration, iterables))
    while True:
        try:
            yield reductor(next(i) for i in iterators)
        except IteratorExhausted: # when any of iterators get exhausted.
            break

Then

def chunker(data, size, reductor=tuple):
    return custom_zip(*[iter(data)]*size, reductor=reductor)

使用示例:

>>> for i in chunker('12345', 2):
...     print(repr(i))
...
('1', '2')
('3', '4')
>>> for i in chunker('12345', 2, ''.join):
...     print(repr(i))
...
'12'
'34'

这个问题的理想解决方案是使用迭代器(而不仅仅是序列)。它还应该是快速的。

这是itertools文档提供的解决方案:

def grouper(n, iterable, fillvalue=None):
    #"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    return itertools.izip_longest(fillvalue=fillvalue, *args)

在我的mac book air上使用ipython的%timeit,我每次循环得到47.5 us。

然而,这真的不适合我,因为结果被填充为偶数大小的组。没有填充的解决方案稍微复杂一些。最天真的解决方案可能是:

def grouper(size, iterable):
    i = iter(iterable)
    while True:
        out = []
        try:
            for _ in range(size):
                out.append(i.next())
        except StopIteration:
            yield out
            break
        
        yield out

简单,但相当慢:每循环693个

我能想到的最好的解决方案是使用islice进行内循环:

def grouper(size, iterable):
    it = iter(iterable)
    while True:
        group = tuple(itertools.islice(it, None, size))
        if not group:
            break
        yield group

对于同样的数据集,我每循环得到305 us。

由于无法更快地得到一个纯粹的解决方案,我提供了以下解决方案,但有一个重要的警告:如果您的输入数据中有filldata的实例,则可能会得到错误的答案。

def grouper(n, iterable, fillvalue=None):
    #"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    # itertools.zip_longest on Python 3
    for x in itertools.izip_longest(*args, fillvalue=fillvalue):
        if x[-1] is fillvalue:
            yield tuple(v for v in x if v is not fillvalue)
        else:
            yield x

我真的不喜欢这个答案,但它明显更快。每回路124 us

这里非常python化(也可以内联split_groups函数体)

import itertools
def split_groups(iter_in, group_size):
    return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))

for x, y, z, w in split_groups(range(16), 4):
    foo += x * y + z * w