我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

我希望通过将迭代器从列表中删除,我不是简单地复制列表的一部分。生成器可以被切片,它们将自动仍然是一个生成器,而列表将被切片成1000个条目的大块,这是较低的效率。

def iter_group(iterable, batch_size:int):
    length = len(iterable)
    start = batch_size*-1
    end = 0
    while(end < length):
        start += batch_size
        end += batch_size
        if type(iterable) == list:
            yield (iterable[i] for i in range(start,min(length-1,end)))
        else:
            yield iterable[start:end]

用法:

items = list(range(1,1251))

for item_group in iter_group(items, 1000):
    for item in item_group:
        print(item)

其他回答

除非我遗漏了一些内容,否则没有提到以下使用生成器表达式的简单解决方案。它假设块的大小和数量都是已知的(通常情况下),并且不需要填充:

def chunks(it, n, m):
    """Make an iterator over m first chunks of size n.
    """
    it = iter(it)
    # Chunks are presented as tuples.
    return (tuple(next(it) for _ in range(n)) for _ in range(m))
import itertools
def chunks(iterable,size):
    it = iter(iterable)
    chunk = tuple(itertools.islice(it,size))
    while chunk:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

# though this will throw ValueError if the length of ints
# isn't a multiple of four:
for x1,x2,x3,x4 in chunks(ints,4):
    foo += x1 + x2 + x3 + x4

for chunk in chunks(ints,4):
    foo += sum(chunk)

另一种方法:

import itertools
def chunks2(iterable,size,filler=None):
    it = itertools.chain(iterable,itertools.repeat(filler,size-1))
    chunk = tuple(itertools.islice(it,size))
    while len(chunk) == size:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

# x2, x3 and x4 could get the value 0 if the length is not
# a multiple of 4.
for x1,x2,x3,x4 in chunks2(ints,4,0):
    foo += x1 + x2 + x3 + x4

关于J.F. Sebastian给出的解决方案:

def chunker(iterable, chunksize):
    return zip(*[iter(iterable)]*chunksize)

它很聪明,但有一个缺点——总是返回元组。如何获得字符串代替? 当然,你可以写“.join(chunker(…))”,但无论如何都要构造临时元组。

你可以通过编写自己的zip来摆脱临时元组,就像这样:

class IteratorExhausted(Exception):
    pass

def translate_StopIteration(iterable, to=IteratorExhausted):
    for i in iterable:
        yield i
    raise to # StopIteration would get ignored because this is generator,
             # but custom exception can leave the generator.

def custom_zip(*iterables, reductor=tuple):
    iterators = tuple(map(translate_StopIteration, iterables))
    while True:
        try:
            yield reductor(next(i) for i in iterators)
        except IteratorExhausted: # when any of iterators get exhausted.
            break

Then

def chunker(data, size, reductor=tuple):
    return custom_zip(*[iter(data)]*size, reductor=reductor)

使用示例:

>>> for i in chunker('12345', 2):
...     print(repr(i))
...
('1', '2')
('3', '4')
>>> for i in chunker('12345', 2, ''.join):
...     print(repr(i))
...
'12'
'34'

修改自Python的itertools文档中的Recipes部分:

from itertools import zip_longest

def grouper(iterable, n, fillvalue=None):
    args = [iter(iterable)] * n
    return zip_longest(*args, fillvalue=fillvalue)

例子

grouper('ABCDEFG', 3, 'x')  # --> 'ABC' 'DEF' 'Gxx'

注意:在Python 2上使用izip_longest而不是zip_longest。

还有另一个答案,它的优点是:

1)容易理解 2)适用于任何可迭代对象,而不仅仅是序列(上面的一些答案会阻塞文件句柄) 3)不立即将数据块加载到内存 4)不会在内存中生成对同一迭代器的块长的引用列表 5)在列表的末尾没有填充填充值

话虽如此,我还没有计算它的时间,所以它可能比一些更聪明的方法慢,而且考虑到用例,一些优势可能是无关紧要的。

def chunkiter(iterable, size):
  def inneriter(first, iterator, size):
    yield first
    for _ in xrange(size - 1): 
      yield iterator.next()
  it = iter(iterable)
  while True:
    yield inneriter(it.next(), it, size)

In [2]: i = chunkiter('abcdefgh', 3)
In [3]: for ii in i:                                                
          for c in ii:
            print c,
          print ''
        ...:     
        a b c 
        d e f 
        g h 

Update: A couple of drawbacks due to the fact the inner and outer loops are pulling values from the same iterator: 1) continue doesn't work as expected in the outer loop - it just continues on to the next item rather than skipping a chunk. However, this doesn't seem like a problem as there's nothing to test in the outer loop. 2) break doesn't work as expected in the inner loop - control will wind up in the inner loop again with the next item in the iterator. To skip whole chunks, either wrap the inner iterator (ii above) in a tuple, e.g. for c in tuple(ii), or set a flag and exhaust the iterator.