我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

你可以使用函数库中的partition或chunks函数:

from funcy import partition

for a, b, c, d in partition(4, ints):
    foo += a * b * c * d

这些函数还有迭代器版本ipartition和ichunks,在这种情况下更有效。

您还可以查看它们的实现。

其他回答

因为没有人提到它,这里有一个zip()解决方案:

>>> def chunker(iterable, chunksize):
...     return zip(*[iter(iterable)]*chunksize)

只有当你的序列长度总是能被块大小整除时,它才有效,或者如果后面的块不能整除,你就不关心它。

例子:

>>> s = '1234567890'
>>> chunker(s, 3)
[('1', '2', '3'), ('4', '5', '6'), ('7', '8', '9')]
>>> chunker(s, 4)
[('1', '2', '3', '4'), ('5', '6', '7', '8')]
>>> chunker(s, 5)
[('1', '2', '3', '4', '5'), ('6', '7', '8', '9', '0')]

或者使用itertools。返回一个迭代器而不是一个列表:

>>> from itertools import izip
>>> def chunker(iterable, chunksize):
...     return izip(*[iter(iterable)]*chunksize)

填充可以固定使用@ΤΖΩΤΖΙΟΥ的答案:

>>> from itertools import chain, izip, repeat
>>> def chunker(iterable, chunksize, fillvalue=None):
...     it   = chain(iterable, repeat(fillvalue, chunksize-1))
...     args = [it] * chunksize
...     return izip(*args)

使用小的函数和东西真的不吸引我;我更喜欢使用切片:

data = [...]
chunk_size = 10000 # or whatever
chunks = [data[i:i+chunk_size] for i in xrange(0,len(data),chunk_size)]
for chunk in chunks:
    ...

这里非常python化(也可以内联split_groups函数体)

import itertools
def split_groups(iter_in, group_size):
    return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))

for x, y, z, w in split_groups(range(16), 4):
    foo += x * y + z * w

关于J.F. Sebastian给出的解决方案:

def chunker(iterable, chunksize):
    return zip(*[iter(iterable)]*chunksize)

它很聪明,但有一个缺点——总是返回元组。如何获得字符串代替? 当然,你可以写“.join(chunker(…))”,但无论如何都要构造临时元组。

你可以通过编写自己的zip来摆脱临时元组,就像这样:

class IteratorExhausted(Exception):
    pass

def translate_StopIteration(iterable, to=IteratorExhausted):
    for i in iterable:
        yield i
    raise to # StopIteration would get ignored because this is generator,
             # but custom exception can leave the generator.

def custom_zip(*iterables, reductor=tuple):
    iterators = tuple(map(translate_StopIteration, iterables))
    while True:
        try:
            yield reductor(next(i) for i in iterators)
        except IteratorExhausted: # when any of iterators get exhausted.
            break

Then

def chunker(data, size, reductor=tuple):
    return custom_zip(*[iter(data)]*size, reductor=reductor)

使用示例:

>>> for i in chunker('12345', 2):
...     print(repr(i))
...
('1', '2')
('3', '4')
>>> for i in chunker('12345', 2, ''.join):
...     print(repr(i))
...
'12'
'34'
def chunker(seq, size):
    return (seq[pos:pos + size] for pos in range(0, len(seq), size))

适用于任何序列:

text = "I am a very, very helpful text"

for group in chunker(text, 7):
   print(repr(group),)
# 'I am a ' 'very, v' 'ery hel' 'pful te' 'xt'

print('|'.join(chunker(text, 10)))
# I am a ver|y, very he|lpful text

animals = ['cat', 'dog', 'rabbit', 'duck', 'bird', 'cow', 'gnu', 'fish']

for group in chunker(animals, 3):
    print(group)
# ['cat', 'dog', 'rabbit']
# ['duck', 'bird', 'cow']
# ['gnu', 'fish']