我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

为什么不使用列表理解

l = [1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
n = 4
filler = 0
fills = len(l) % n
chunks = ((l + [filler] * fills)[x * n:x * n + n] for x in range(int((len(l) + n - 1)/n)))
print(chunks)

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 0]]

其他回答

你可以使用函数库中的partition或chunks函数:

from funcy import partition

for a, b, c, d in partition(4, ints):
    foo += a * b * c * d

这些函数还有迭代器版本ipartition和ichunks,在这种情况下更有效。

您还可以查看它们的实现。

如果你不介意使用外部包,你可以使用iteration_utilities。Grouper from iteration_utilities它支持所有可迭代对象(不仅仅是序列):

from iteration_utilities import grouper
seq = list(range(20))
for group in grouper(seq, 4):
    print(group)

打印:

(0, 1, 2, 3)
(4, 5, 6, 7)
(8, 9, 10, 11)
(12, 13, 14, 15)
(16, 17, 18, 19)

如果长度不是组大小的倍数,它还支持填充(不完整的最后一组)或截断(丢弃不完整的最后一组)最后一个:

from iteration_utilities import grouper
seq = list(range(17))
for group in grouper(seq, 4):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)
# (16,)

for group in grouper(seq, 4, fillvalue=None):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)
# (16, None, None, None)

for group in grouper(seq, 4, truncate=True):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)

基准

我还决定比较上面提到的几种方法的运行时间。这是一个对数-对数图,根据不同大小的列表将“10”个元素分组。对于定性结果:较低意味着更快:

至少在这个基准测试中iteration_utilities。石斑鱼表现最好。接着是Craz。

基准是用simple_benchmark1创建的。运行这个基准测试的代码是:

import iteration_utilities
import itertools
from itertools import zip_longest

def consume_all(it):
    return iteration_utilities.consume(it, None)

import simple_benchmark
b = simple_benchmark.BenchmarkBuilder()

@b.add_function()
def grouper(l, n):
    return consume_all(iteration_utilities.grouper(l, n))

def Craz_inner(iterable, n, fillvalue=None):
    args = [iter(iterable)] * n
    return zip_longest(*args, fillvalue=fillvalue)

@b.add_function()
def Craz(iterable, n, fillvalue=None):
    return consume_all(Craz_inner(iterable, n, fillvalue))

def nosklo_inner(seq, size):
    return (seq[pos:pos + size] for pos in range(0, len(seq), size))

@b.add_function()
def nosklo(seq, size):
    return consume_all(nosklo_inner(seq, size))

def SLott_inner(ints, chunk_size):
    for i in range(0, len(ints), chunk_size):
        yield ints[i:i+chunk_size]

@b.add_function()
def SLott(ints, chunk_size):
    return consume_all(SLott_inner(ints, chunk_size))

def MarkusJarderot1_inner(iterable,size):
    it = iter(iterable)
    chunk = tuple(itertools.islice(it,size))
    while chunk:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

@b.add_function()
def MarkusJarderot1(iterable,size):
    return consume_all(MarkusJarderot1_inner(iterable,size))

def MarkusJarderot2_inner(iterable,size,filler=None):
    it = itertools.chain(iterable,itertools.repeat(filler,size-1))
    chunk = tuple(itertools.islice(it,size))
    while len(chunk) == size:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

@b.add_function()
def MarkusJarderot2(iterable,size):
    return consume_all(MarkusJarderot2_inner(iterable,size))

@b.add_arguments()
def argument_provider():
    for exp in range(2, 20):
        size = 2**exp
        yield size, simple_benchmark.MultiArgument([[0] * size, 10])

r = b.run()

1免责声明:我是iteration_utilities和simple_benchmark库的作者。

似乎没有一个漂亮的方法来做到这一点。下面是一个有很多方法的页面,包括:

def split_seq(seq, size):
    newseq = []
    splitsize = 1.0/size*len(seq)
    for i in range(size):
        newseq.append(seq[int(round(i*splitsize)):int(round((i+1)*splitsize))])
    return newseq

我需要一个解决方案,也将工作与集和生成器。我写不出很短很漂亮的东西,但至少可读性很好。

def chunker(seq, size):
    res = []
    for el in seq:
        res.append(el)
        if len(res) == size:
            yield res
            res = []
    if res:
        yield res

列表:

>>> list(chunker([i for i in range(10)], 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

Set:

>>> list(chunker(set([i for i in range(10)]), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

发电机:

>>> list(chunker((i for i in range(10)), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

还有另一个答案,它的优点是:

1)容易理解 2)适用于任何可迭代对象,而不仅仅是序列(上面的一些答案会阻塞文件句柄) 3)不立即将数据块加载到内存 4)不会在内存中生成对同一迭代器的块长的引用列表 5)在列表的末尾没有填充填充值

话虽如此,我还没有计算它的时间,所以它可能比一些更聪明的方法慢,而且考虑到用例,一些优势可能是无关紧要的。

def chunkiter(iterable, size):
  def inneriter(first, iterator, size):
    yield first
    for _ in xrange(size - 1): 
      yield iterator.next()
  it = iter(iterable)
  while True:
    yield inneriter(it.next(), it, size)

In [2]: i = chunkiter('abcdefgh', 3)
In [3]: for ii in i:                                                
          for c in ii:
            print c,
          print ''
        ...:     
        a b c 
        d e f 
        g h 

Update: A couple of drawbacks due to the fact the inner and outer loops are pulling values from the same iterator: 1) continue doesn't work as expected in the outer loop - it just continues on to the next item rather than skipping a chunk. However, this doesn't seem like a problem as there's nothing to test in the outer loop. 2) break doesn't work as expected in the inner loop - control will wind up in the inner loop again with the next item in the iterator. To skip whole chunks, either wrap the inner iterator (ii above) in a tuple, e.g. for c in tuple(ii), or set a flag and exhaust the iterator.