我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

这里非常python化(也可以内联split_groups函数体)

import itertools
def split_groups(iter_in, group_size):
    return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))

for x, y, z, w in split_groups(range(16), 4):
    foo += x * y + z * w

其他回答

似乎没有一个漂亮的方法来做到这一点。下面是一个有很多方法的页面,包括:

def split_seq(seq, size):
    newseq = []
    splitsize = 1.0/size*len(seq)
    for i in range(size):
        newseq.append(seq[int(round(i*splitsize)):int(round((i+1)*splitsize))])
    return newseq

我喜欢这种方法。它感觉简单而不神奇,支持所有可迭代类型,并且不需要导入。

def chunk_iter(iterable, chunk_size):
it = iter(iterable)
while True:
    chunk = tuple(next(it) for _ in range(chunk_size))
    if not chunk:
        break
    yield chunk

因为没有人提到它,这里有一个zip()解决方案:

>>> def chunker(iterable, chunksize):
...     return zip(*[iter(iterable)]*chunksize)

只有当你的序列长度总是能被块大小整除时,它才有效,或者如果后面的块不能整除,你就不关心它。

例子:

>>> s = '1234567890'
>>> chunker(s, 3)
[('1', '2', '3'), ('4', '5', '6'), ('7', '8', '9')]
>>> chunker(s, 4)
[('1', '2', '3', '4'), ('5', '6', '7', '8')]
>>> chunker(s, 5)
[('1', '2', '3', '4', '5'), ('6', '7', '8', '9', '0')]

或者使用itertools。返回一个迭代器而不是一个列表:

>>> from itertools import izip
>>> def chunker(iterable, chunksize):
...     return izip(*[iter(iterable)]*chunksize)

填充可以固定使用@ΤΖΩΤΖΙΟΥ的答案:

>>> from itertools import chain, izip, repeat
>>> def chunker(iterable, chunksize, fillvalue=None):
...     it   = chain(iterable, repeat(fillvalue, chunksize-1))
...     args = [it] * chunksize
...     return izip(*args)

制作itertools很容易。Groupby工作为您获得一个iterables的iterable,而不创建任何临时列表:

groupby(iterable, (lambda x,y: (lambda z: x.next()/y))(count(),100))

不要被嵌套lambda吓跑,外部lambda只运行一次,将count()生成器和常数100放入内部lambda的作用域。

我用它来发送行块到mysql。

for k,v in groupby(bigdata, (lambda x,y: (lambda z: x.next()/y))(count(),100))):
    cursor.executemany(sql, v)

NumPy很简单:

ints = array([1, 2, 3, 4, 5, 6, 7, 8])
for int1, int2 in ints.reshape(-1, 2):
    print(int1, int2)

输出:

1 2
3 4
5 6
7 8