我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

我从来不想填充我的块,所以这个要求是必要的。我发现在任何可迭代对象上工作的能力也是必需的。鉴于此,我决定扩展公认的答案,https://stackoverflow.com/a/434411/1074659。

如果由于需要比较和筛选填充值而不需要填充,则这种方法的性能会受到轻微的影响。然而,对于大块大小,这个实用程序是非常高性能的。

#!/usr/bin/env python3
from itertools import zip_longest


_UNDEFINED = object()


def chunker(iterable, chunksize, fillvalue=_UNDEFINED):
    """
    Collect data into chunks and optionally pad it.

    Performance worsens as `chunksize` approaches 1.

    Inspired by:
        https://docs.python.org/3/library/itertools.html#itertools-recipes

    """
    args = [iter(iterable)] * chunksize
    chunks = zip_longest(*args, fillvalue=fillvalue)
    yield from (
        filter(lambda val: val is not _UNDEFINED, chunk)
        if chunk[-1] is _UNDEFINED
        else chunk
        for chunk in chunks
    ) if fillvalue is _UNDEFINED else chunks

其他回答

因为没有人提到它,这里有一个zip()解决方案:

>>> def chunker(iterable, chunksize):
...     return zip(*[iter(iterable)]*chunksize)

只有当你的序列长度总是能被块大小整除时,它才有效,或者如果后面的块不能整除,你就不关心它。

例子:

>>> s = '1234567890'
>>> chunker(s, 3)
[('1', '2', '3'), ('4', '5', '6'), ('7', '8', '9')]
>>> chunker(s, 4)
[('1', '2', '3', '4'), ('5', '6', '7', '8')]
>>> chunker(s, 5)
[('1', '2', '3', '4', '5'), ('6', '7', '8', '9', '0')]

或者使用itertools。返回一个迭代器而不是一个列表:

>>> from itertools import izip
>>> def chunker(iterable, chunksize):
...     return izip(*[iter(iterable)]*chunksize)

填充可以固定使用@ΤΖΩΤΖΙΟΥ的答案:

>>> from itertools import chain, izip, repeat
>>> def chunker(iterable, chunksize, fillvalue=None):
...     it   = chain(iterable, repeat(fillvalue, chunksize-1))
...     args = [it] * chunksize
...     return izip(*args)
from itertools import izip_longest

def chunker(iterable, chunksize, filler):
    return izip_longest(*[iter(iterable)]*chunksize, fillvalue=filler)

另一种方法是使用双参数形式的iter:

from itertools import islice

def group(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())

这可以很容易地适应使用填充(这类似于Markus Jarderot的答案):

from itertools import islice, chain, repeat

def group_pad(it, size, pad=None):
    it = chain(iter(it), repeat(pad))
    return iter(lambda: tuple(islice(it, size)), (pad,) * size)

这些甚至可以组合为可选的填充:

_no_pad = object()
def group(it, size, pad=_no_pad):
    if pad == _no_pad:
        it = iter(it)
        sentinel = ()
    else:
        it = chain(iter(it), repeat(pad))
        sentinel = (pad,) * size
    return iter(lambda: tuple(islice(it, size)), sentinel)

除非我遗漏了一些内容,否则没有提到以下使用生成器表达式的简单解决方案。它假设块的大小和数量都是已知的(通常情况下),并且不需要填充:

def chunks(it, n, m):
    """Make an iterator over m first chunks of size n.
    """
    it = iter(it)
    # Chunks are presented as tuples.
    return (tuple(next(it) for _ in range(n)) for _ in range(m))

如果你不介意使用外部包,你可以使用iteration_utilities。Grouper from iteration_utilities它支持所有可迭代对象(不仅仅是序列):

from iteration_utilities import grouper
seq = list(range(20))
for group in grouper(seq, 4):
    print(group)

打印:

(0, 1, 2, 3)
(4, 5, 6, 7)
(8, 9, 10, 11)
(12, 13, 14, 15)
(16, 17, 18, 19)

如果长度不是组大小的倍数,它还支持填充(不完整的最后一组)或截断(丢弃不完整的最后一组)最后一个:

from iteration_utilities import grouper
seq = list(range(17))
for group in grouper(seq, 4):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)
# (16,)

for group in grouper(seq, 4, fillvalue=None):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)
# (16, None, None, None)

for group in grouper(seq, 4, truncate=True):
    print(group)
# (0, 1, 2, 3)
# (4, 5, 6, 7)
# (8, 9, 10, 11)
# (12, 13, 14, 15)

基准

我还决定比较上面提到的几种方法的运行时间。这是一个对数-对数图,根据不同大小的列表将“10”个元素分组。对于定性结果:较低意味着更快:

至少在这个基准测试中iteration_utilities。石斑鱼表现最好。接着是Craz。

基准是用simple_benchmark1创建的。运行这个基准测试的代码是:

import iteration_utilities
import itertools
from itertools import zip_longest

def consume_all(it):
    return iteration_utilities.consume(it, None)

import simple_benchmark
b = simple_benchmark.BenchmarkBuilder()

@b.add_function()
def grouper(l, n):
    return consume_all(iteration_utilities.grouper(l, n))

def Craz_inner(iterable, n, fillvalue=None):
    args = [iter(iterable)] * n
    return zip_longest(*args, fillvalue=fillvalue)

@b.add_function()
def Craz(iterable, n, fillvalue=None):
    return consume_all(Craz_inner(iterable, n, fillvalue))

def nosklo_inner(seq, size):
    return (seq[pos:pos + size] for pos in range(0, len(seq), size))

@b.add_function()
def nosklo(seq, size):
    return consume_all(nosklo_inner(seq, size))

def SLott_inner(ints, chunk_size):
    for i in range(0, len(ints), chunk_size):
        yield ints[i:i+chunk_size]

@b.add_function()
def SLott(ints, chunk_size):
    return consume_all(SLott_inner(ints, chunk_size))

def MarkusJarderot1_inner(iterable,size):
    it = iter(iterable)
    chunk = tuple(itertools.islice(it,size))
    while chunk:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

@b.add_function()
def MarkusJarderot1(iterable,size):
    return consume_all(MarkusJarderot1_inner(iterable,size))

def MarkusJarderot2_inner(iterable,size,filler=None):
    it = itertools.chain(iterable,itertools.repeat(filler,size-1))
    chunk = tuple(itertools.islice(it,size))
    while len(chunk) == size:
        yield chunk
        chunk = tuple(itertools.islice(it,size))

@b.add_function()
def MarkusJarderot2(iterable,size):
    return consume_all(MarkusJarderot2_inner(iterable,size))

@b.add_arguments()
def argument_provider():
    for exp in range(2, 20):
        size = 2**exp
        yield size, simple_benchmark.MultiArgument([[0] * size, 10])

r = b.run()

1免责声明:我是iteration_utilities和simple_benchmark库的作者。