我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

我从来不想填充我的块,所以这个要求是必要的。我发现在任何可迭代对象上工作的能力也是必需的。鉴于此,我决定扩展公认的答案,https://stackoverflow.com/a/434411/1074659。

如果由于需要比较和筛选填充值而不需要填充,则这种方法的性能会受到轻微的影响。然而,对于大块大小,这个实用程序是非常高性能的。

#!/usr/bin/env python3
from itertools import zip_longest


_UNDEFINED = object()


def chunker(iterable, chunksize, fillvalue=_UNDEFINED):
    """
    Collect data into chunks and optionally pad it.

    Performance worsens as `chunksize` approaches 1.

    Inspired by:
        https://docs.python.org/3/library/itertools.html#itertools-recipes

    """
    args = [iter(iterable)] * chunksize
    chunks = zip_longest(*args, fillvalue=fillvalue)
    yield from (
        filter(lambda val: val is not _UNDEFINED, chunk)
        if chunk[-1] is _UNDEFINED
        else chunk
        for chunk in chunks
    ) if fillvalue is _UNDEFINED else chunks

其他回答

修改自Python的itertools文档中的Recipes部分:

from itertools import zip_longest

def grouper(iterable, n, fillvalue=None):
    args = [iter(iterable)] * n
    return zip_longest(*args, fillvalue=fillvalue)

例子

grouper('ABCDEFG', 3, 'x')  # --> 'ABC' 'DEF' 'Gxx'

注意:在Python 2上使用izip_longest而不是zip_longest。

from itertools import izip_longest

def chunker(iterable, chunksize, filler):
    return izip_longest(*[iter(iterable)]*chunksize, fillvalue=filler)

因为没有人提到它,这里有一个zip()解决方案:

>>> def chunker(iterable, chunksize):
...     return zip(*[iter(iterable)]*chunksize)

只有当你的序列长度总是能被块大小整除时,它才有效,或者如果后面的块不能整除,你就不关心它。

例子:

>>> s = '1234567890'
>>> chunker(s, 3)
[('1', '2', '3'), ('4', '5', '6'), ('7', '8', '9')]
>>> chunker(s, 4)
[('1', '2', '3', '4'), ('5', '6', '7', '8')]
>>> chunker(s, 5)
[('1', '2', '3', '4', '5'), ('6', '7', '8', '9', '0')]

或者使用itertools。返回一个迭代器而不是一个列表:

>>> from itertools import izip
>>> def chunker(iterable, chunksize):
...     return izip(*[iter(iterable)]*chunksize)

填充可以固定使用@ΤΖΩΤΖΙΟΥ的答案:

>>> from itertools import chain, izip, repeat
>>> def chunker(iterable, chunksize, fillvalue=None):
...     it   = chain(iterable, repeat(fillvalue, chunksize-1))
...     args = [it] * chunksize
...     return izip(*args)

如果列表大小相同,可以使用zip()将它们组合成4元组列表。例如:

# Four lists of four elements each.

l1 = range(0, 4)
l2 = range(4, 8)
l3 = range(8, 12)
l4 = range(12, 16)

for i1, i2, i3, i4 in zip(l1, l2, l3, l4):
    ...

下面是zip()函数生成的内容:

>>> print l1
[0, 1, 2, 3]
>>> print l2
[4, 5, 6, 7]
>>> print l3
[8, 9, 10, 11]
>>> print l4
[12, 13, 14, 15]
>>> print zip(l1, l2, l3, l4)
[(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)]

如果列表很大,并且您不想将它们组合成一个更大的列表,请使用itertools.izip(),它会生成一个迭代器,而不是一个列表。

from itertools import izip

for i1, i2, i3, i4 in izip(l1, l2, l3, l4):
    ...

还有另一个答案,它的优点是:

1)容易理解 2)适用于任何可迭代对象,而不仅仅是序列(上面的一些答案会阻塞文件句柄) 3)不立即将数据块加载到内存 4)不会在内存中生成对同一迭代器的块长的引用列表 5)在列表的末尾没有填充填充值

话虽如此,我还没有计算它的时间,所以它可能比一些更聪明的方法慢,而且考虑到用例,一些优势可能是无关紧要的。

def chunkiter(iterable, size):
  def inneriter(first, iterator, size):
    yield first
    for _ in xrange(size - 1): 
      yield iterator.next()
  it = iter(iterable)
  while True:
    yield inneriter(it.next(), it, size)

In [2]: i = chunkiter('abcdefgh', 3)
In [3]: for ii in i:                                                
          for c in ii:
            print c,
          print ''
        ...:     
        a b c 
        d e f 
        g h 

Update: A couple of drawbacks due to the fact the inner and outer loops are pulling values from the same iterator: 1) continue doesn't work as expected in the outer loop - it just continues on to the next item rather than skipping a chunk. However, this doesn't seem like a problem as there's nothing to test in the outer loop. 2) break doesn't work as expected in the inner loop - control will wind up in the inner loop again with the next item in the iterator. To skip whole chunks, either wrap the inner iterator (ii above) in a tuple, e.g. for c in tuple(ii), or set a flag and exhaust the iterator.