我需要一个简单的浮点舍入函数,这样:

double round(double);

round(0.1) = 0
round(-0.1) = 0
round(-0.9) = -1

我可以在math.h中找到ceil()和floor() -但没有round()。

它是否以另一个名字出现在标准c++库中,或者它是否丢失了??


当前回答

我在asm的x86架构和MS VS特定的c++中使用round的以下实现:

__forceinline int Round(const double v)
{
    int r;
    __asm
    {
        FLD     v
        FISTP   r
        FWAIT
    };
    return r;
}

UPD:返回双值

__forceinline double dround(const double v)
{
    double r;
    __asm
    {
        FLD     v
        FRNDINT
        FSTP    r
        FWAIT
    };
    return r;
}

输出:

dround(0.1): 0.000000000000000
dround(-0.1): -0.000000000000000
dround(0.9): 1.000000000000000
dround(-0.9): -1.000000000000000
dround(1.1): 1.000000000000000
dround(-1.1): -1.000000000000000
dround(0.49999999999999994): 0.000000000000000
dround(-0.49999999999999994): -0.000000000000000
dround(0.5): 0.000000000000000
dround(-0.5): -0.000000000000000

其他回答

如果您需要能够在支持c++ 11标准的环境中编译代码,但也需要能够在不支持c++ 11标准的环境中编译相同的代码,那么您可以使用函数宏在std::round()和每个系统的自定义函数之间进行选择。只需将-DCPP11或/DCPP11传递给兼容c++ 11的编译器(或使用其内置的版本宏),并创建一个像这样的头文件:

// File: rounding.h
#include <cmath>

#ifdef CPP11
    #define ROUND(x) std::round(x)
#else    /* CPP11 */
    inline double myRound(double x) {
        return (x >= 0.0 ? std::floor(x + 0.5) : std::ceil(x - 0.5));
    }

    #define ROUND(x) myRound(x)
#endif   /* CPP11 */

有关快速示例,请参见http://ideone.com/zal709。

这在不兼容c++ 11的环境中近似于std::round(),包括保留-0.0的符号位。然而,这可能会导致轻微的性能损失,并且在舍入某些已知的“问题”浮点值(如0.4999999999999999994或类似值)时可能会出现问题。

或者,如果你有c++ 11兼容的编译器,你可以从它的<cmath>头文件中获取std::round(),并使用它来创建你自己的头文件来定义函数(如果它还没有定义的话)。但是请注意,这可能不是最佳解决方案,特别是如果您需要为多个平台编译时。

它通常实现为下限(值+ 0.5)。

编辑:它可能不叫四舍五入,因为我知道至少有三种四舍五入算法:四舍五入到零,四舍五入到最接近的整数,以及银行家的四舍五入。你要求的是最接近的整数。

c++ 03标准依赖于C90标准,该标准称为标准C库,该标准在c++ 03标准草案中涵盖(最接近c++ 03的公开标准草案是N1804) 1.2节规范参考:

ISO/IEC 9899:1990第7条和ISO/IEC 9899:1990第7条描述的库 ISO / IEC 9899 / Amd。1:1995以下称为标准C Library.1)

如果我们去cppreference上的round, lround, llround的C文档,我们可以看到round和相关函数是C99的一部分,因此在c++ 03或更早的版本中不可用。

在c++ 11中,这种情况发生了变化,因为c++ 11依赖于C标准库的C99草案标准,因此提供了std::round和for整型返回类型std::lround, std::llround:

#include <iostream>
#include <cmath>

int main()
{
    std::cout << std::round( 0.4 ) << " " << std::lround( 0.4 ) << " " << std::llround( 0.4 ) << std::endl ;
    std::cout << std::round( 0.5 ) << " " << std::lround( 0.5 ) << " " << std::llround( 0.5 ) << std::endl ;
    std::cout << std::round( 0.6 ) << " " << std::lround( 0.6 ) << " " << std::llround( 0.6 ) << std::endl ;
}

C99的另一个选项是std::trunc,它:

计算最接近的大小不大于arg的整数。

#include <iostream>
#include <cmath>

int main()
{
    std::cout << std::trunc( 0.4 ) << std::endl ;
    std::cout << std::trunc( 0.9 ) << std::endl ;
    std::cout << std::trunc( 1.1 ) << std::endl ;
    
}

如果你需要支持非c++ 11应用程序,你最好使用boost round, round, lround, llround或boost trunc。

滚出自己版本的圆很难

滚动你自己的可能不值得努力,因为它比看起来更难:四舍五入浮点到最近的整数,第1部分,四舍五入浮点到最近的整数,第2部分和四舍五入浮点到最近的整数,第3部分解释:

例如,使用std::floor并添加0.5的普通滚动实现并不适用于所有输入:

double myround(double d)
{
  return std::floor(d + 0.5);
}

这将失败的一个输入是0.49999999999999994。

另一种常见的实现涉及将浮点类型转换为整型类型,在整型部分不能在目标类型中表示的情况下,可以调用未定义的行为。我们可以从c++标准草案第4.9节浮动积分转换中看到这一点,其中说(强调我的):

浮点类型的右值可以转换为类的右值 整数类型。转换截断;也就是小数部分 就会被丢弃。如果截断的值不能,则行为未定义 用目标类型表示。[…]

例如:

float myround(float f)
{
  return static_cast<float>( static_cast<unsigned int>( f ) ) ;
}

给定std::numeric_limits<unsigned int>::max()为4294967295,然后调用以下函数:

myround( 4294967296.5f ) 

会造成溢出,(看现场)。

通过在C中实现round()的简明方法,我们可以看到这有多困难。其中引用了纽库版的单精度浮点轮。对于一些看似简单的东西来说,它是一个非常长的函数。任何不熟悉浮点实现的人都不可能正确地实现这个函数:

float roundf(x)
{
  int signbit;
  __uint32_t w;
  /* Most significant word, least significant word. */
  int exponent_less_127;

  GET_FLOAT_WORD(w, x);

  /* Extract sign bit. */
  signbit = w & 0x80000000;

  /* Extract exponent field. */
  exponent_less_127 = (int)((w & 0x7f800000) >> 23) - 127;

  if (exponent_less_127 < 23)
    {
      if (exponent_less_127 < 0)
        {
          w &= 0x80000000;
          if (exponent_less_127 == -1)
            /* Result is +1.0 or -1.0. */
            w |= ((__uint32_t)127 << 23);
        }
      else
        {
          unsigned int exponent_mask = 0x007fffff >> exponent_less_127;
          if ((w & exponent_mask) == 0)
            /* x has an integral value. */
            return x;

          w += 0x00400000 >> exponent_less_127;
          w &= ~exponent_mask;
        }
    }
  else
    {
      if (exponent_less_127 == 128)
        /* x is NaN or infinite. */
        return x + x;
      else
        return x;
    }
  SET_FLOAT_WORD(x, w);
  return x;
}

另一方面,如果没有其他解决方案可用,newlib可能是一个选择,因为它是一个经过良好测试的实现。

正如在评论和其他回答中指出的那样,ISO c++标准库直到ISO c++ 11才添加round(),当时该函数是通过引用ISO C99标准数学库而引入的。

For positive operands in [½, ub] round(x) == floor (x + 0.5), where ub is 223 for float when mapped to IEEE-754 (2008) binary32, and 252 for double when it is mapped to IEEE-754 (2008) binary64. The numbers 23 and 52 correspond to the number of stored mantissa bits in these two floating-point formats. For positive operands in [+0, ½) round(x) == 0, and for positive operands in (ub, +∞] round(x) == x. As the function is symmetric about the x-axis, negative arguments x can be handled according to round(-x) == -round(x).

这导致了下面的压缩代码。它在各种平台上编译成合理数量的机器指令。我观察到gpu上最紧凑的代码,其中my_roundf()需要大约12条指令。根据处理器架构和工具链的不同,这种基于浮点的方法可能比在不同答案中引用的newlib基于整数的实现更快或更慢。

我使用Intel编译器版本13对my_roundf()与newlib roundf()实现进行了详尽的测试,同时使用/fp:strict和/fp:fast。我还检查了newlib版本是否与Intel编译器mathimf库中的roundf()匹配。对于双精度round()不可能进行详尽的测试,但是代码在结构上与单精度实现相同。

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>

float my_roundf (float x)
{
    const float half = 0.5f;
    const float one = 2 * half;
    const float lbound = half;
    const float ubound = 1L << 23;
    float a, f, r, s, t;
    s = (x < 0) ? (-one) : one;
    a = x * s;
    t = (a < lbound) ? x : s;
    f = (a < lbound) ? 0 : floorf (a + half);
    r = (a > ubound) ? x : (t * f);
    return r;
}

double my_round (double x)
{
    const double half = 0.5;
    const double one = 2 * half;
    const double lbound = half;
    const double ubound = 1ULL << 52;
    double a, f, r, s, t;
    s = (x < 0) ? (-one) : one;
    a = x * s;
    t = (a < lbound) ? x : s;
    f = (a < lbound) ? 0 : floor (a + half);
    r = (a > ubound) ? x : (t * f);
    return r;
}

uint32_t float_as_uint (float a)
{
    uint32_t r;
    memcpy (&r, &a, sizeof(r));
    return r;
}

float uint_as_float (uint32_t a)
{
    float r;
    memcpy (&r, &a, sizeof(r));
    return r;
}

float newlib_roundf (float x)
{
    uint32_t w;
    int exponent_less_127;

    w = float_as_uint(x);
    /* Extract exponent field. */
    exponent_less_127 = (int)((w & 0x7f800000) >> 23) - 127;
    if (exponent_less_127 < 23) {
        if (exponent_less_127 < 0) {
            /* Extract sign bit. */
            w &= 0x80000000;
            if (exponent_less_127 == -1) {
                /* Result is +1.0 or -1.0. */
                w |= ((uint32_t)127 << 23);
            }
        } else {
            uint32_t exponent_mask = 0x007fffff >> exponent_less_127;
            if ((w & exponent_mask) == 0) {
                /* x has an integral value. */
                return x;
            }
            w += 0x00400000 >> exponent_less_127;
            w &= ~exponent_mask;
        }
    } else {
        if (exponent_less_127 == 128) {
            /* x is NaN or infinite so raise FE_INVALID by adding */
            return x + x;
        } else {
            return x;
        }
    }
    x = uint_as_float (w);
    return x;
}

int main (void)
{
    uint32_t argi, resi, refi;
    float arg, res, ref;

    argi = 0;
    do {
        arg = uint_as_float (argi);
        ref = newlib_roundf (arg);
        res = my_roundf (arg);
        resi = float_as_uint (res);
        refi = float_as_uint (ref);
        if (resi != refi) { // check for identical bit pattern
            printf ("!!!! arg=%08x  res=%08x  ref=%08x\n", argi, resi, refi);
            return EXIT_FAILURE;
        }
        argi++;
    } while (argi);
    return EXIT_SUCCESS;
}

你可以四舍五入到n位精度:

double round( double x )
{
const double sd = 1000; //for accuracy to 3 decimal places
return int(x*sd + (x<0? -0.5 : 0.5))/sd;
}