我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

但有一点需要注意,如果你这样做了

df1['e'] = Series(np.random.randn(sLength), index=df1.index)

这实际上是df1.index上的左连接。因此,如果您希望具有外部连接效果,我的解决方案可能并不完美,即创建一个包含所有数据的索引值的数据框架,然后使用上面的代码。例如,

data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)

其他回答

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

最简单的方法:

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

这样在pandas对象中设置新值时就避免了所谓的链式索引。点击这里进一步阅读。

如果数据帧和Series对象具有相同的索引,则为pandas。Concat也在这里工作:

import pandas as pd
df
#          a            b           c           d
#0  0.671399     0.101208   -0.181532    0.241273
#1  0.446172    -0.243316    0.051767    1.577318
#2  0.614758     0.075793   -0.451460   -0.012493

e = pd.Series([-0.335485, -1.166658, -0.385571])    
e
#0   -0.335485
#1   -1.166658
#2   -0.385571
#dtype: float64

# here we need to give the series object a name which converts to the new  column name 
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df

#          a            b           c           d           e
#0  0.671399     0.101208   -0.181532    0.241273   -0.335485
#1  0.446172    -0.243316    0.051767    1.577318   -1.166658
#2  0.614758     0.075793   -0.451460   -0.012493   -0.385571

以防它们没有相同的索引:

e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)

以下是我所做的…但我对熊猫和Python都很陌生,所以不能保证。

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

如果你想将整个新列设置为一个初始值(例如None),你可以这样做:df1['e'] = None

这实际上会给单元格分配object类型。因此,稍后您可以自由地将复杂的数据类型(如列表)放入单个单元格中。