我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

你可以像这样通过for循环插入新列:

for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])

示例代码如下:

import pandas as pd

data = {
  "any_of_column_in_your_dframe" : ["ersingulbahar","yagiz","TS"],
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
}

#load data into a DataFrame object:
your_dframe = pd.DataFrame(data)


for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
      
      
print(your_dframe) 

输出如下:

any_of_column_in_your_dframe calories duration new_column_length
ersingulbahar 420 50 13.0
yagiz 380 40 5.0
TS 390 45 2.0

你也可以这样用:

your_dframe["new_column_length"]=your_dframe["any_of_column_in_your_dframe"].apply(len)

其他回答

我得到了可怕的SettingWithCopyWarning,它没有通过使用iloc语法修复。我的DataFrame是由read_sql从ODBC源创建的。根据上面low - tech的建议,以下方法对我来说是有效的:

df.insert(len(df.columns), 'e', pd.Series(np.random.randn(sLength),  index=df.index))

This worked fine to insert the column at the end. I don't know if it is the most efficient, but I don't like warning messages. I think there is a better solution, but I can't find it, and I think it depends on some aspect of the index. Note. That this only works once and will give an error message if trying to overwrite and existing column. Note As above and from 0.16.0 assign is the best solution. See documentation http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html#pandas.DataFrame.assign Works well for data flow type where you don't overwrite your intermediate values.

如果数据帧和Series对象具有相同的索引,则为pandas。Concat也在这里工作:

import pandas as pd
df
#          a            b           c           d
#0  0.671399     0.101208   -0.181532    0.241273
#1  0.446172    -0.243316    0.051767    1.577318
#2  0.614758     0.075793   -0.451460   -0.012493

e = pd.Series([-0.335485, -1.166658, -0.385571])    
e
#0   -0.335485
#1   -1.166658
#2   -0.385571
#dtype: float64

# here we need to give the series object a name which converts to the new  column name 
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df

#          a            b           c           d           e
#0  0.671399     0.101208   -0.181532    0.241273   -0.335485
#1  0.446172    -0.243316    0.051767    1.577318   -1.166658
#2  0.614758     0.075793   -0.451460   -0.012493   -0.385571

以防它们没有相同的索引:

e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)

简单明了的:

df.loc[:, 'NewCol'] = 'New_Val'

例子:

df = pd.DataFrame(data=np.random.randn(20, 4), columns=['A', 'B', 'C', 'D'])

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
3  -0.147354  0.778707  0.479145  2.284143
4  -0.529529  0.000571  0.913779  1.395894
5   2.592400  0.637253  1.441096 -0.631468
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
8   0.606985 -2.232903 -1.358107 -2.855494
9  -0.692013  0.671866  1.179466 -1.180351
10 -1.093707 -0.530600  0.182926 -1.296494
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
18  0.693458  0.144327  0.329500 -0.655045
19  0.104425  0.037412  0.450598 -0.923387


df.drop([3, 5, 8, 10, 18], inplace=True)

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
4  -0.529529  0.000571  0.913779  1.395894
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
9  -0.692013  0.671866  1.179466 -1.180351
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
19  0.104425  0.037412  0.450598 -0.923387

df.loc[:, 'NewCol'] = 0

df
           A         B         C         D  NewCol
0  -0.761269  0.477348  1.170614  0.752714       0
1   1.217250 -0.930860 -0.769324 -0.408642       0
2  -0.619679 -1.227659 -0.259135  1.700294       0
4  -0.529529  0.000571  0.913779  1.395894       0
6   0.757178  0.240012 -0.553820  1.177202       0
7  -0.986128 -1.313843  0.788589 -0.707836       0
9  -0.692013  0.671866  1.179466 -1.180351       0
11 -0.143273 -0.503199 -1.328728  0.610552       0
12 -0.923110 -1.365890 -1.366202 -1.185999       0
13 -2.026832  0.273593 -0.440426 -0.627423       0
14 -0.054503 -0.788866 -0.228088 -0.404783       0
15  0.955298 -1.430019  1.434071 -0.088215       0
16 -0.227946  0.047462  0.373573 -0.111675       0
17  1.627912  0.043611  1.743403 -0.012714       0
19  0.104425  0.037412  0.450598 -0.923387       0

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

如果你想将整个新列设置为一个初始值(例如None),你可以这样做:df1['e'] = None

这实际上会给单元格分配object类型。因此,稍后您可以自由地将复杂的数据类型(如列表)放入单个单元格中。