我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

编辑2017

正如@Alexander在评论中所指出的,目前将Series的值添加为DataFrame的新列的最好方法是使用assign:

df1 = df1.assign(e=pd.Series(np.random.randn(sLength)).values)

编辑2015 有些人报告说用这段代码得到了SettingWithCopyWarning。 但是,该代码仍然可以在当前的pandas版本0.16.1中完美运行。

>>> sLength = len(df1['a'])
>>> df1
          a         b         c         d
6 -0.269221 -0.026476  0.997517  1.294385
8  0.917438  0.847941  0.034235 -0.448948

>>> df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e
6 -0.269221 -0.026476  0.997517  1.294385  1.757167
8  0.917438  0.847941  0.034235 -0.448948  2.228131

>>> pd.version.short_version
'0.16.1'

SettingWithCopyWarning的目的是通知数据帧副本上可能存在的无效赋值。它不一定会说你做错了(它可能会触发假阳性),但从0.13.0开始,它会让你知道有更多适合相同目的的方法。然后,如果您得到警告,只需遵循它的建议:尝试使用.loc[row_index,col_indexer] = value代替

>>> df1.loc[:,'f'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e         f
6 -0.269221 -0.026476  0.997517  1.294385  1.757167 -0.050927
8  0.917438  0.847941  0.034235 -0.448948  2.228131  0.006109
>>> 

事实上,这是目前熊猫文档中描述的更有效的方法


最初的回答:

使用原始的df1索引创建系列:

df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)

其他回答

但有一点需要注意,如果你这样做了

df1['e'] = Series(np.random.randn(sLength), index=df1.index)

这实际上是df1.index上的左连接。因此,如果您希望具有外部连接效果,我的解决方案可能并不完美,即创建一个包含所有数据的索引值的数据框架,然后使用上面的代码。例如,

data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()
import pandas as pd

# Define a dictionary containing data
data = {'a': [0,0,0.671399,0.446172,0,0.614758],
    'b': [0,0,0.101208,-0.243316,0,0.075793],
    'c': [0,0,-0.181532,0.051767,0,-0.451460],
    'd': [0,0,0.241273,1.577318,0,-0.012493]}

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)

# Declare a list that is to be converted into a column
col_e = [-0.335485,-1.166658,-0.385571,0,0,0]


df['e'] = col_e

# add column 'e'
df['e'] = col_e

# Observe the result
df

如果我们想给df中一个新列的所有行赋一个标量值,例如:10:

df = df.assign(new_col=lambda x:10)  # x is each row passed in to the lambda func

Df现在在所有行中都有值为10的新列'new_col'。

向现有数据框架添加新列的简单方法是:

new_cols = ['a' , 'b' , 'c' , 'd']

for col in new_cols:
    df[f'{col}'] = 0 #assiging 0 for the placeholder

print(df.columns)