我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

最简单的方法:

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

这样在pandas对象中设置新值时就避免了所谓的链式索引。点击这里进一步阅读。

其他回答

在分配新列之前,如果已经索引了数据,则需要对索引进行排序。至少在我的情况下,我必须:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])

在最近的Pandas版本中,似乎应该使用df.assign:

df1 = df1.assign(e=np.random)

它不会产生SettingWithCopyWarning。

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()

向现有数据帧中添加一个新列'e'

 df1.loc[:,'e'] = Series(np.random.randn(sLength))

如果你要添加的列是一个序列变量,那么只需:

df["new_columns_name"]=series_variable_name #this will do it for you

即使要替换现有列,这种方法也很有效。只需输入与要替换的列相同的new_columns_name。它只会用新的系列数据覆盖现有的列数据。