我有以下索引DataFrame命名列和行不连续的数字:
a b c d
2 0.671399 0.101208 -0.181532 0.241273
3 0.446172 -0.243316 0.051767 1.577318
5 0.614758 0.075793 -0.451460 -0.012493
我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。
0 -0.335485
1 -1.166658
2 -0.385571
dtype: float64
如何将列e添加到上面的例子中?
import pandas as pd
# Define a dictionary containing data
data = {'a': [0,0,0.671399,0.446172,0,0.614758],
'b': [0,0,0.101208,-0.243316,0,0.075793],
'c': [0,0,-0.181532,0.051767,0,-0.451460],
'd': [0,0,0.241273,1.577318,0,-0.012493]}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
col_e = [-0.335485,-1.166658,-0.385571,0,0,0]
df['e'] = col_e
# add column 'e'
df['e'] = col_e
# Observe the result
df
为了完整起见-使用DataFrame.eval()方法的另一个解决方案:
数据:
In [44]: e
Out[44]:
0 1.225506
1 -1.033944
2 -0.498953
3 -0.373332
4 0.615030
5 -0.622436
dtype: float64
In [45]: df1
Out[45]:
a b c d
0 -0.634222 -0.103264 0.745069 0.801288
4 0.782387 -0.090279 0.757662 -0.602408
5 -0.117456 2.124496 1.057301 0.765466
7 0.767532 0.104304 -0.586850 1.051297
8 -0.103272 0.958334 1.163092 1.182315
9 -0.616254 0.296678 -0.112027 0.679112
解决方案:
In [46]: df1.eval("e = @e.values", inplace=True)
In [47]: df1
Out[47]:
a b c d e
0 -0.634222 -0.103264 0.745069 0.801288 1.225506
4 0.782387 -0.090279 0.757662 -0.602408 -1.033944
5 -0.117456 2.124496 1.057301 0.765466 -0.498953
7 0.767532 0.104304 -0.586850 1.051297 -0.373332
8 -0.103272 0.958334 1.163092 1.182315 0.615030
9 -0.616254 0.296678 -0.112027 0.679112 -0.622436