我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

最简单的方法:

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

这样在pandas对象中设置新值时就避免了所谓的链式索引。点击这里进一步阅读。

其他回答

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()

向pandas数据框架插入新列的4种方法

using simple assignment, insert(), assign() and Concat() methods.

import pandas as pd

df = pd.DataFrame({
    'col_a':[True, False, False], 
    'col_b': [1, 2, 3],
})
print(df)
    col_a  col_b
0   True     1
1  False     2
2  False     3

使用简单赋值

ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
print(ser)
0    a
1    b
2    c
dtype: object

df['col_c'] = pd.Series(['a', 'b', 'c'], index=[1, 2, 3])
print(df)
     col_a  col_b col_c
0   True     1  NaN
1  False     2    a
2  False     3    b

使用分配()

e = pd.Series([1.0, 3.0, 2.0], index=[0, 2, 1])
ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
df.assign(colC=s.values, colB=e.values)
     col_a  col_b col_c
0   True   1.0    a
1  False   3.0    b
2  False   2.0    c

使用insert ()

df.insert(len(df.columns), 'col_c', ser.values)
print(df)
    col_a  col_b col_c
0   True     1    a
1  False     2    b
2  False     3    c

使用concat ()

ser = pd.Series(['a', 'b', 'c'], index=[10, 20, 30])
df = pd.concat([df, ser.rename('colC')], axis=1)
print(df)
     col_a  col_b col_c
0    True   1.0  NaN
1   False   2.0  NaN
2   False   3.0  NaN
10    NaN   NaN    a
20    NaN   NaN    b
30    NaN   NaN    c

直接通过NumPy这样做将是最有效的:

df1['e'] = np.random.randn(sLength)

注意我最初(非常老)的建议是使用map(这要慢得多):

df1['e'] = df1['a'].map(lambda x: np.random.random())
import pandas as pd

# Define a dictionary containing data
data = {'a': [0,0,0.671399,0.446172,0,0.614758],
    'b': [0,0,0.101208,-0.243316,0,0.075793],
    'c': [0,0,-0.181532,0.051767,0,-0.451460],
    'd': [0,0,0.241273,1.577318,0,-0.012493]}

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)

# Declare a list that is to be converted into a column
col_e = [-0.335485,-1.166658,-0.385571,0,0,0]


df['e'] = col_e

# add column 'e'
df['e'] = col_e

# Observe the result
df

我正在寻找一种添加numpy列的通用方法。nans到一个数据帧而不得到愚蠢的SettingWithCopyWarning。

从以下方面:

答案在这里 关于将变量作为关键字参数传递的问题 此方法用于生成一个numpy数组的NaNs

我想到了这个:

col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})