我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

这是添加新列的简单方法:df['e'] = e

其他回答

直接通过NumPy这样做将是最有效的:

df1['e'] = np.random.randn(sLength)

注意我最初(非常老)的建议是使用map(这要慢得多):

df1['e'] = df1['a'].map(lambda x: np.random.random())

向现有数据帧中添加一个新列'e'

 df1.loc[:,'e'] = Series(np.random.randn(sLength))

当您将Series对象作为新列添加到现有DF时,您需要确保它们都具有相同的索引。 然后添加到DF中

e_series = pd.Series([-0.335485, -1.166658,-0.385571])
print(e_series)
e_series.index = d_f.index
d_f['e'] = e_series
d_f

在最近的Pandas版本中,似乎应该使用df.assign:

df1 = df1.assign(e=np.random)

它不会产生SettingWithCopyWarning。

你可以像这样通过for循环插入新列:

for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])

示例代码如下:

import pandas as pd

data = {
  "any_of_column_in_your_dframe" : ["ersingulbahar","yagiz","TS"],
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
}

#load data into a DataFrame object:
your_dframe = pd.DataFrame(data)


for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
      
      
print(your_dframe) 

输出如下:

any_of_column_in_your_dframe calories duration new_column_length
ersingulbahar 420 50 13.0
yagiz 380 40 5.0
TS 390 45 2.0

你也可以这样用:

your_dframe["new_column_length"]=your_dframe["any_of_column_in_your_dframe"].apply(len)