我有以下索引DataFrame命名列和行不连续的数字:
a b c d
2 0.671399 0.101208 -0.181532 0.241273
3 0.446172 -0.243316 0.051767 1.577318
5 0.614758 0.075793 -0.451460 -0.012493
我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。
0 -0.335485
1 -1.166658
2 -0.385571
dtype: float64
如何将列e添加到上面的例子中?
你可以像这样通过for循环插入新列:
for label,row in your_dframe.iterrows():
your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
示例代码如下:
import pandas as pd
data = {
"any_of_column_in_your_dframe" : ["ersingulbahar","yagiz","TS"],
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
#load data into a DataFrame object:
your_dframe = pd.DataFrame(data)
for label,row in your_dframe.iterrows():
your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
print(your_dframe)
输出如下:
any_of_column_in_your_dframe |
calories |
duration |
new_column_length |
ersingulbahar |
420 |
50 |
13.0 |
yagiz |
380 |
40 |
5.0 |
TS |
390 |
45 |
2.0 |
你也可以这样用:
your_dframe["new_column_length"]=your_dframe["any_of_column_in_your_dframe"].apply(len)
这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。
因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。
我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。
data = pd.read_csv('data.csv')
def myFunction(x):
//implement your logic here
if so and so:
return a
return b
variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)
data['predicted_class'] = predicted_class
// check dataFrame, new column is included based on an existing column data for each row
data.head()