我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

创建一个空列

df['i'] = None

其他回答

让我补充一下,就像hum3一样,.loc没有解决SettingWithCopyWarning,我不得不求助于df.insert()。在我的例子中,假阳性是由“假”链索引dict['a']['e']生成的,其中'e'是新列,dict['a']是来自字典的数据框架。

还请注意,如果您知道自己在做什么,您可以使用切换警告 pd.options.mode。chained_assignment =无 然后用这里给出的另一个解。

向现有数据帧中添加一个新列'e'

 df1.loc[:,'e'] = Series(np.random.randn(sLength))

我正在寻找一种添加numpy列的通用方法。nans到一个数据帧而不得到愚蠢的SettingWithCopyWarning。

从以下方面:

答案在这里 关于将变量作为关键字参数传递的问题 此方法用于生成一个numpy数组的NaNs

我想到了这个:

col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})

以下是我所做的…但我对熊猫和Python都很陌生,所以不能保证。

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

在分配新列之前,如果已经索引了数据,则需要对索引进行排序。至少在我的情况下,我必须:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])