我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

以下是我所做的…但我对熊猫和Python都很陌生,所以不能保证。

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

其他回答

如果你想将整个新列设置为一个初始值(例如None),你可以这样做:df1['e'] = None

这实际上会给单元格分配object类型。因此,稍后您可以自由地将复杂的数据类型(如列表)放入单个单元格中。

你可以像这样通过for循环插入新列:

for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])

示例代码如下:

import pandas as pd

data = {
  "any_of_column_in_your_dframe" : ["ersingulbahar","yagiz","TS"],
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
}

#load data into a DataFrame object:
your_dframe = pd.DataFrame(data)


for label,row in your_dframe.iterrows():
      your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
      
      
print(your_dframe) 

输出如下:

any_of_column_in_your_dframe calories duration new_column_length
ersingulbahar 420 50 13.0
yagiz 380 40 5.0
TS 390 45 2.0

你也可以这样用:

your_dframe["new_column_length"]=your_dframe["any_of_column_in_your_dframe"].apply(len)

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

要在数据帧的给定位置(0 <= loc <=列的数量)插入一个新列,只需使用datafframe .insert:

DataFrame.insert(loc, column, value)

因此,如果你想在一个名为df的数据帧的末尾添加列e,你可以使用:

e = [-0.335485, -1.166658, -0.385571]    
DataFrame.insert(loc=len(df.columns), column='e', value=e)

value可以是一个Series,一个整数(在这种情况下,所有单元格都被这个值填充),或者一个类似数组的结构

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html

当您将Series对象作为新列添加到现有DF时,您需要确保它们都具有相同的索引。 然后添加到DF中

e_series = pd.Series([-0.335485, -1.166658,-0.385571])
print(e_series)
e_series.index = d_f.index
d_f['e'] = e_series
d_f