我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

以下是我所做的…但我对熊猫和Python都很陌生,所以不能保证。

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

其他回答

向现有数据框架添加新列的简单方法是:

new_cols = ['a' , 'b' , 'c' , 'd']

for col in new_cols:
    df[f'{col}'] = 0 #assiging 0 for the placeholder

print(df.columns)

向pandas数据框架插入新列的4种方法

using simple assignment, insert(), assign() and Concat() methods.

import pandas as pd

df = pd.DataFrame({
    'col_a':[True, False, False], 
    'col_b': [1, 2, 3],
})
print(df)
    col_a  col_b
0   True     1
1  False     2
2  False     3

使用简单赋值

ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
print(ser)
0    a
1    b
2    c
dtype: object

df['col_c'] = pd.Series(['a', 'b', 'c'], index=[1, 2, 3])
print(df)
     col_a  col_b col_c
0   True     1  NaN
1  False     2    a
2  False     3    b

使用分配()

e = pd.Series([1.0, 3.0, 2.0], index=[0, 2, 1])
ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
df.assign(colC=s.values, colB=e.values)
     col_a  col_b col_c
0   True   1.0    a
1  False   3.0    b
2  False   2.0    c

使用insert ()

df.insert(len(df.columns), 'col_c', ser.values)
print(df)
    col_a  col_b col_c
0   True     1    a
1  False     2    b
2  False     3    c

使用concat ()

ser = pd.Series(['a', 'b', 'c'], index=[10, 20, 30])
df = pd.concat([df, ser.rename('colC')], axis=1)
print(df)
     col_a  col_b col_c
0    True   1.0  NaN
1   False   2.0  NaN
2   False   3.0  NaN
10    NaN   NaN    a
20    NaN   NaN    b
30    NaN   NaN    c

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

直接通过NumPy这样做将是最有效的:

df1['e'] = np.random.randn(sLength)

注意我最初(非常老)的建议是使用map(这要慢得多):

df1['e'] = df1['a'].map(lambda x: np.random.random())
x=pd.DataFrame([1,2,3,4,5])

y=pd.DataFrame([5,4,3,2,1])

z=pd.concat([x,y],axis=1)