我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

其他回答

直接通过NumPy这样做将是最有效的:

df1['e'] = np.random.randn(sLength)

注意我最初(非常老)的建议是使用map(这要慢得多):

df1['e'] = df1['a'].map(lambda x: np.random.random())

为了完整起见-使用DataFrame.eval()方法的另一个解决方案:

数据:

In [44]: e
Out[44]:
0    1.225506
1   -1.033944
2   -0.498953
3   -0.373332
4    0.615030
5   -0.622436
dtype: float64

In [45]: df1
Out[45]:
          a         b         c         d
0 -0.634222 -0.103264  0.745069  0.801288
4  0.782387 -0.090279  0.757662 -0.602408
5 -0.117456  2.124496  1.057301  0.765466
7  0.767532  0.104304 -0.586850  1.051297
8 -0.103272  0.958334  1.163092  1.182315
9 -0.616254  0.296678 -0.112027  0.679112

解决方案:

In [46]: df1.eval("e = @e.values", inplace=True)

In [47]: df1
Out[47]:
          a         b         c         d         e
0 -0.634222 -0.103264  0.745069  0.801288  1.225506
4  0.782387 -0.090279  0.757662 -0.602408 -1.033944
5 -0.117456  2.124496  1.057301  0.765466 -0.498953
7  0.767532  0.104304 -0.586850  1.051297 -0.373332
8 -0.103272  0.958334  1.163092  1.182315  0.615030
9 -0.616254  0.296678 -0.112027  0.679112 -0.622436

要在数据帧的给定位置(0 <= loc <=列的数量)插入一个新列,只需使用datafframe .insert:

DataFrame.insert(loc, column, value)

因此,如果你想在一个名为df的数据帧的末尾添加列e,你可以使用:

e = [-0.335485, -1.166658, -0.385571]    
DataFrame.insert(loc=len(df.columns), column='e', value=e)

value可以是一个Series,一个整数(在这种情况下,所有单元格都被这个值填充),或者一个类似数组的结构

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html

首先创建一个包含相关数据的python的list_of_e。 用这个: Df ['e'] = list_of_e

向现有数据帧中添加一个新列'e'

 df1.loc[:,'e'] = Series(np.random.randn(sLength))