我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

如果数据帧和Series对象具有相同的索引,则为pandas。Concat也在这里工作:

import pandas as pd
df
#          a            b           c           d
#0  0.671399     0.101208   -0.181532    0.241273
#1  0.446172    -0.243316    0.051767    1.577318
#2  0.614758     0.075793   -0.451460   -0.012493

e = pd.Series([-0.335485, -1.166658, -0.385571])    
e
#0   -0.335485
#1   -1.166658
#2   -0.385571
#dtype: float64

# here we need to give the series object a name which converts to the new  column name 
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df

#          a            b           c           d           e
#0  0.671399     0.101208   -0.181532    0.241273   -0.335485
#1  0.446172    -0.243316    0.051767    1.577318   -1.166658
#2  0.614758     0.075793   -0.451460   -0.012493   -0.385571

以防它们没有相同的索引:

e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)

其他回答

当您将Series对象作为新列添加到现有DF时,您需要确保它们都具有相同的索引。 然后添加到DF中

e_series = pd.Series([-0.335485, -1.166658,-0.385571])
print(e_series)
e_series.index = d_f.index
d_f['e'] = e_series
d_f

向现有数据框架添加新列的简单方法是:

new_cols = ['a' , 'b' , 'c' , 'd']

for col in new_cols:
    df[f'{col}'] = 0 #assiging 0 for the placeholder

print(df.columns)

向pandas数据框架插入新列的4种方法

using simple assignment, insert(), assign() and Concat() methods.

import pandas as pd

df = pd.DataFrame({
    'col_a':[True, False, False], 
    'col_b': [1, 2, 3],
})
print(df)
    col_a  col_b
0   True     1
1  False     2
2  False     3

使用简单赋值

ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
print(ser)
0    a
1    b
2    c
dtype: object

df['col_c'] = pd.Series(['a', 'b', 'c'], index=[1, 2, 3])
print(df)
     col_a  col_b col_c
0   True     1  NaN
1  False     2    a
2  False     3    b

使用分配()

e = pd.Series([1.0, 3.0, 2.0], index=[0, 2, 1])
ser = pd.Series(['a', 'b', 'c'], index=[0, 1, 2])
df.assign(colC=s.values, colB=e.values)
     col_a  col_b col_c
0   True   1.0    a
1  False   3.0    b
2  False   2.0    c

使用insert ()

df.insert(len(df.columns), 'col_c', ser.values)
print(df)
    col_a  col_b col_c
0   True     1    a
1  False     2    b
2  False     3    c

使用concat ()

ser = pd.Series(['a', 'b', 'c'], index=[10, 20, 30])
df = pd.concat([df, ser.rename('colC')], axis=1)
print(df)
     col_a  col_b col_c
0    True   1.0  NaN
1   False   2.0  NaN
2   False   3.0  NaN
10    NaN   NaN    a
20    NaN   NaN    b
30    NaN   NaN    c
x=pd.DataFrame([1,2,3,4,5])

y=pd.DataFrame([5,4,3,2,1])

z=pd.concat([x,y],axis=1)

在分配新列之前,如果已经索引了数据,则需要对索引进行排序。至少在我的情况下,我必须:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])