我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()

其他回答

我正在寻找一种添加numpy列的通用方法。nans到一个数据帧而不得到愚蠢的SettingWithCopyWarning。

从以下方面:

答案在这里 关于将变量作为关键字参数传递的问题 此方法用于生成一个numpy数组的NaNs

我想到了这个:

col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})
x=pd.DataFrame([1,2,3,4,5])

y=pd.DataFrame([5,4,3,2,1])

z=pd.concat([x,y],axis=1)

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()

如果你只需要创建一个新的空列,那么最短的解决方案是:

df.loc[:, 'e'] = pd.Series()

最简单的方法:

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

这样在pandas对象中设置新值时就避免了所谓的链式索引。点击这里进一步阅读。