我有以下索引DataFrame命名列和行不连续的数字:
a b c d
2 0.671399 0.101208 -0.181532 0.241273
3 0.446172 -0.243316 0.051767 1.577318
5 0.614758 0.075793 -0.451460 -0.012493
我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。
0 -0.335485
1 -1.166658
2 -0.385571
dtype: float64
如何将列e添加到上面的例子中?
要在数据帧的给定位置(0 <= loc <=列的数量)插入一个新列,只需使用datafframe .insert:
DataFrame.insert(loc, column, value)
因此,如果你想在一个名为df的数据帧的末尾添加列e,你可以使用:
e = [-0.335485, -1.166658, -0.385571]
DataFrame.insert(loc=len(df.columns), column='e', value=e)
value可以是一个Series,一个整数(在这种情况下,所有单元格都被这个值填充),或者一个类似数组的结构
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html
编辑2017
正如@Alexander在评论中所指出的,目前将Series的值添加为DataFrame的新列的最好方法是使用assign:
df1 = df1.assign(e=pd.Series(np.random.randn(sLength)).values)
编辑2015
有些人报告说用这段代码得到了SettingWithCopyWarning。
但是,该代码仍然可以在当前的pandas版本0.16.1中完美运行。
>>> sLength = len(df1['a'])
>>> df1
a b c d
6 -0.269221 -0.026476 0.997517 1.294385
8 0.917438 0.847941 0.034235 -0.448948
>>> df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
a b c d e
6 -0.269221 -0.026476 0.997517 1.294385 1.757167
8 0.917438 0.847941 0.034235 -0.448948 2.228131
>>> pd.version.short_version
'0.16.1'
SettingWithCopyWarning的目的是通知数据帧副本上可能存在的无效赋值。它不一定会说你做错了(它可能会触发假阳性),但从0.13.0开始,它会让你知道有更多适合相同目的的方法。然后,如果您得到警告,只需遵循它的建议:尝试使用.loc[row_index,col_indexer] = value代替
>>> df1.loc[:,'f'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
a b c d e f
6 -0.269221 -0.026476 0.997517 1.294385 1.757167 -0.050927
8 0.917438 0.847941 0.034235 -0.448948 2.228131 0.006109
>>>
事实上,这是目前熊猫文档中描述的更有效的方法
最初的回答:
使用原始的df1索引创建系列:
df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
你可以像这样通过for循环插入新列:
for label,row in your_dframe.iterrows():
your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
示例代码如下:
import pandas as pd
data = {
"any_of_column_in_your_dframe" : ["ersingulbahar","yagiz","TS"],
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
#load data into a DataFrame object:
your_dframe = pd.DataFrame(data)
for label,row in your_dframe.iterrows():
your_dframe.loc[label,"new_column_length"]=len(row["any_of_column_in_your_dframe"])
print(your_dframe)
输出如下:
any_of_column_in_your_dframe |
calories |
duration |
new_column_length |
ersingulbahar |
420 |
50 |
13.0 |
yagiz |
380 |
40 |
5.0 |
TS |
390 |
45 |
2.0 |
你也可以这样用:
your_dframe["new_column_length"]=your_dframe["any_of_column_in_your_dframe"].apply(len)
但有一点需要注意,如果你这样做了
df1['e'] = Series(np.random.randn(sLength), index=df1.index)
这实际上是df1.index上的左连接。因此,如果您希望具有外部连接效果,我的解决方案可能并不完美,即创建一个包含所有数据的索引值的数据框架,然后使用上面的代码。例如,
data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)