pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引

df_filtered = df[df['column'] == value]

这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?

df_filtered = df.mask(lambda x: x['column'] == value)

当前回答

您还可以利用numpy库进行逻辑操作。它相当快。

df[np.logical_and(df['A'] == 1 ,df['B'] == 6)]

其他回答

如果将列设置为作为索引进行搜索,则可以使用DataFrame.xs()获取横截面。这没有查询答案那么通用,但在某些情况下可能很有用。

import pandas as pd
import numpy as np

np.random.seed([3,1415])
df = pd.DataFrame(
    np.random.randint(3, size=(10, 5)),
    columns=list('ABCDE')
)

df
# Out[55]: 
#    A  B  C  D  E
# 0  0  2  2  2  2
# 1  1  1  2  0  2
# 2  0  2  0  0  2
# 3  0  2  2  0  1
# 4  0  1  1  2  0
# 5  0  0  0  1  2
# 6  1  0  1  1  1
# 7  0  0  2  0  2
# 8  2  2  2  2  2
# 9  1  2  0  2  1

df.set_index(['A', 'D']).xs([0, 2]).reset_index()
# Out[57]: 
#    A  D  B  C  E
# 0  0  2  2  2  2
# 1  0  2  1  1  0

我也有同样的问题,只是我想把这些标准组合成一个OR条件。Wouter Overmeire给出的格式将两个标准组合成一个AND条件,使得两个条件都必须满足:

In [96]: df
Out[96]:
   A  B  C  D
a  1  4  9  1
b  4  5  0  2
c  5  5  1  0
d  1  3  9  6

In [99]: df[(df.A == 1) & (df.D == 6)]
Out[99]:
   A  B  C  D
d  1  3  9  6

但我发现,如果你把每个条件……== True),并将标准与管道连接,这些标准在OR条件中组合,只要其中任何一个为真就满足:

df[((df.A==1) == True) | ((df.D==6) == True)]

我提供了更多的例子。这个答案和https://stackoverflow.com/a/28159296/是一样的

我将添加其他编辑,使这篇文章更有用。

pandas.DataFrame.query 查询正是为了这个目的。考虑数据框架df

import pandas as pd
import numpy as np

np.random.seed([3,1415])
df = pd.DataFrame(
    np.random.randint(10, size=(10, 5)),
    columns=list('ABCDE')
)

df

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
2  0  2  0  4  9
3  7  3  2  4  3
4  3  6  7  7  4
5  5  3  7  5  9
6  8  7  6  4  7
7  6  2  6  6  5
8  2  8  7  5  8
9  4  7  6  1  5

让我们使用查询过滤所有行D > B

df.query('D > B')

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
2  0  2  0  4  9
3  7  3  2  4  3
4  3  6  7  7  4
5  5  3  7  5  9
7  6  2  6  6  5

我们把它串起来

df.query('D > B').query('C > B')
# equivalent to
# df.query('D > B and C > B')
# but defeats the purpose of demonstrating chaining

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
4  3  6  7  7  4
5  5  3  7  5  9
7  6  2  6  6  5

这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。

df[df["column_name"] != 5].groupby("other_column_name")

似乎可以工作:你也可以嵌套[]操作符。也许是因为你问了这个问题。

您还可以利用numpy库进行逻辑操作。它相当快。

df[np.logical_and(df['A'] == 1 ,df['B'] == 6)]