pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引

df_filtered = df[df['column'] == value]

这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?

df_filtered = df.mask(lambda x: x['column'] == value)

当前回答

只是想添加一个演示,使用loc不仅按行过滤,还按列过滤,以及链式操作的一些优点。

下面的代码可以按值筛选行。

df_filtered = df.loc[df['column'] == value]

通过稍微修改它,您还可以过滤列。

df_filtered = df.loc[df['column'] == value, ['year', 'column']]

为什么我们需要链式方法呢?答案是,如果您有很多操作,那么读取它就很简单。例如,

res =  df\
    .loc[df['station']=='USA', ['TEMP', 'RF']]\
    .groupby('year')\
    .agg(np.nanmean)

其他回答

从0.18.1版本开始,.loc方法接受一个可调用对象进行选择。与lambda函数一起,你可以创建非常灵活的可链过滤器:

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
df.loc[lambda df: df.A == 80]  # equivalent to df[df.A == 80] but chainable

df.sort_values('A').loc[lambda df: df.A > 80].loc[lambda df: df.B > df.A]

如果你所做的只是过滤,你也可以省略.loc。

过滤器可以使用Pandas查询链接:

df = pd.DataFrame(np.random.randn(30, 3), columns=['a','b','c'])
df_filtered = df.query('a > 0').query('0 < b < 2')

过滤器也可以在单个查询中组合:

df_filtered = df.query('a > 0 and 0 < b < 2')

我提供了更多的例子。这个答案和https://stackoverflow.com/a/28159296/是一样的

我将添加其他编辑,使这篇文章更有用。

pandas.DataFrame.query 查询正是为了这个目的。考虑数据框架df

import pandas as pd
import numpy as np

np.random.seed([3,1415])
df = pd.DataFrame(
    np.random.randint(10, size=(10, 5)),
    columns=list('ABCDE')
)

df

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
2  0  2  0  4  9
3  7  3  2  4  3
4  3  6  7  7  4
5  5  3  7  5  9
6  8  7  6  4  7
7  6  2  6  6  5
8  2  8  7  5  8
9  4  7  6  1  5

让我们使用查询过滤所有行D > B

df.query('D > B')

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
2  0  2  0  4  9
3  7  3  2  4  3
4  3  6  7  7  4
5  5  3  7  5  9
7  6  2  6  6  5

我们把它串起来

df.query('D > B').query('C > B')
# equivalent to
# df.query('D > B and C > B')
# but defeats the purpose of demonstrating chaining

   A  B  C  D  E
0  0  2  7  3  8
1  7  0  6  8  6
4  3  6  7  7  4
5  5  3  7  5  9
7  6  2  6  6  5

您还可以利用numpy库进行逻辑操作。它相当快。

df[np.logical_and(df['A'] == 1 ,df['B'] == 6)]

这个解决方案在实现方面比较粗糙,但我发现它在使用方面更简洁,而且肯定比其他提出的解决方案更通用。

https://github.com/toobaz/generic_utils/blob/master/generic_utils/pandas/where.py

你不需要下载整个回购:保存文件和做

from where import where as W

应该足够了。然后你可以这样使用它:

df = pd.DataFrame([[1, 2, True],
                   [3, 4, False], 
                   [5, 7, True]],
                  index=range(3), columns=['a', 'b', 'c'])
# On specific column:
print(df.loc[W['a'] > 2])
print(df.loc[-W['a'] == W['b']])
print(df.loc[~W['c']])
# On entire - or subset of a - DataFrame:
print(df.loc[W.sum(axis=1) > 3])
print(df.loc[W[['a', 'b']].diff(axis=1)['b'] > 1])

一个稍微不那么愚蠢的用法示例:

data = pd.read_csv('ugly_db.csv').loc[~(W == '$null$').any(axis=1)]

顺便说一下,即使在使用布尔cols的情况下,

df.loc[W['cond1']].loc[W['cond2']]

能比吗

df.loc[W['cond1'] & W['cond2']]

因为它只在cond1为True时计算cond2。

免责声明:我第一次给出这个答案是因为我没有看到这个。