pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引
df_filtered = df[df['column'] == value]
这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?
df_filtered = df.mask(lambda x: x['column'] == value)
pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引
df_filtered = df[df['column'] == value]
这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?
df_filtered = df.mask(lambda x: x['column'] == value)
当前回答
我提供了更多的例子。这个答案和https://stackoverflow.com/a/28159296/是一样的
我将添加其他编辑,使这篇文章更有用。
pandas.DataFrame.query 查询正是为了这个目的。考虑数据框架df
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(
np.random.randint(10, size=(10, 5)),
columns=list('ABCDE')
)
df
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
让我们使用查询过滤所有行D > B
df.query('D > B')
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
我们把它串起来
df.query('D > B').query('C > B')
# equivalent to
# df.query('D > B and C > B')
# but defeats the purpose of demonstrating chaining
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
其他回答
pandas为Wouter Overmeire的答案提供了两种不需要重写的选择。一个是.loc[。,如在
df_filtered = df.loc[lambda x: x['column'] == value]
另一个是.pipe()
df_filtered = df.pipe(lambda x: x.loc[x['column'] == value])
我的答案和其他人的相似。如果您不想创建一个新函数,您可以使用pandas已经为您定义的函数。使用管道法。
df.pipe(lambda d: d[d['column'] == value])
我不完全确定你想要什么,你的最后一行代码也没有帮助,但无论如何:
“链式”过滤是通过将布尔索引中的条件“链式”进行的。
In [96]: df
Out[96]:
A B C D
a 1 4 9 1
b 4 5 0 2
c 5 5 1 0
d 1 3 9 6
In [99]: df[(df.A == 1) & (df.D == 6)]
Out[99]:
A B C D
d 1 3 9 6
如果你想要链接方法,你可以添加你自己的掩码方法并使用它。
In [90]: def mask(df, key, value):
....: return df[df[key] == value]
....:
In [92]: pandas.DataFrame.mask = mask
In [93]: df = pandas.DataFrame(np.random.randint(0, 10, (4,4)), index=list('abcd'), columns=list('ABCD'))
In [95]: df.ix['d','A'] = df.ix['a', 'A']
In [96]: df
Out[96]:
A B C D
a 1 4 9 1
b 4 5 0 2
c 5 5 1 0
d 1 3 9 6
In [97]: df.mask('A', 1)
Out[97]:
A B C D
a 1 4 9 1
d 1 3 9 6
In [98]: df.mask('A', 1).mask('D', 6)
Out[98]:
A B C D
d 1 3 9 6
来自@lodagro的答案很棒。我将通过泛化掩码函数来扩展它:
def mask(df, f):
return df[f(df)]
然后你可以这样做:
df.mask(lambda x: x[0] < 0).mask(lambda x: x[1] > 0)
如果你想应用所有常见的布尔掩码以及一个通用的掩码,你可以在一个文件中输入以下内容,然后简单地将它们分配如下:
pd.DataFrame = apply_masks()
用法:
A = pd.DataFrame(np.random.randn(4, 4), columns=["A", "B", "C", "D"])
A.le_mask("A", 0.7).ge_mask("B", 0.2)... (May be repeated as necessary
这有点老套,但如果你根据过滤器不断地切割和改变数据集,它可以让事情变得更干净。 在gen_mask函数中也有一个通用的过滤器,你可以使用lambda函数或其他如果需要的话。
要保存的文件(我使用mask .py):
import pandas as pd
def eq_mask(df, key, value):
return df[df[key] == value]
def ge_mask(df, key, value):
return df[df[key] >= value]
def gt_mask(df, key, value):
return df[df[key] > value]
def le_mask(df, key, value):
return df[df[key] <= value]
def lt_mask(df, key, value):
return df[df[key] < value]
def ne_mask(df, key, value):
return df[df[key] != value]
def gen_mask(df, f):
return df[f(df)]
def apply_masks():
pd.DataFrame.eq_mask = eq_mask
pd.DataFrame.ge_mask = ge_mask
pd.DataFrame.gt_mask = gt_mask
pd.DataFrame.le_mask = le_mask
pd.DataFrame.lt_mask = lt_mask
pd.DataFrame.ne_mask = ne_mask
pd.DataFrame.gen_mask = gen_mask
return pd.DataFrame
if __name__ == '__main__':
pass