pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引

df_filtered = df[df['column'] == value]

这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?

df_filtered = df.mask(lambda x: x['column'] == value)

当前回答

过滤器可以使用Pandas查询链接:

df = pd.DataFrame(np.random.randn(30, 3), columns=['a','b','c'])
df_filtered = df.query('a > 0').query('0 < b < 2')

过滤器也可以在单个查询中组合:

df_filtered = df.query('a > 0 and 0 < b < 2')

其他回答

您还可以利用numpy库进行逻辑操作。它相当快。

df[np.logical_and(df['A'] == 1 ,df['B'] == 6)]

来自@lodagro的答案很棒。我将通过泛化掩码函数来扩展它:

def mask(df, f):
  return df[f(df)]

然后你可以这样做:

df.mask(lambda x: x[0] < 0).mask(lambda x: x[1] > 0)

如果将列设置为作为索引进行搜索,则可以使用DataFrame.xs()获取横截面。这没有查询答案那么通用,但在某些情况下可能很有用。

import pandas as pd
import numpy as np

np.random.seed([3,1415])
df = pd.DataFrame(
    np.random.randint(3, size=(10, 5)),
    columns=list('ABCDE')
)

df
# Out[55]: 
#    A  B  C  D  E
# 0  0  2  2  2  2
# 1  1  1  2  0  2
# 2  0  2  0  0  2
# 3  0  2  2  0  1
# 4  0  1  1  2  0
# 5  0  0  0  1  2
# 6  1  0  1  1  1
# 7  0  0  2  0  2
# 8  2  2  2  2  2
# 9  1  2  0  2  1

df.set_index(['A', 'D']).xs([0, 2]).reset_index()
# Out[57]: 
#    A  D  B  C  E
# 0  0  2  2  2  2
# 1  0  2  1  1  0

我的答案和其他人的相似。如果您不想创建一个新函数,您可以使用pandas已经为您定义的函数。使用管道法。

df.pipe(lambda d: d[d['column'] == value])

过滤器可以使用Pandas查询链接:

df = pd.DataFrame(np.random.randn(30, 3), columns=['a','b','c'])
df_filtered = df.query('a > 0').query('0 < b < 2')

过滤器也可以在单个查询中组合:

df_filtered = df.query('a > 0 and 0 < b < 2')