我如何有效地获得一个NumPy数组中每个唯一值的频率计数?

>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]

当前回答

使用pandas模块:

>>> import pandas as pd
>>> import numpy as np
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> pd.value_counts(x)
1     5
2     3
25    1
5     1
dtype: int64

其他回答

多维频率计数,即计数数组。

>>> print(color_array    )
  array([[255, 128, 128],
   [255, 128, 128],
   [255, 128, 128],
   ...,
   [255, 128, 128],
   [255, 128, 128],
   [255, 128, 128]], dtype=uint8)


>>> np.unique(color_array,return_counts=True,axis=0)
  (array([[ 60, 151, 161],
    [ 60, 155, 162],
    [ 60, 159, 163],
    [ 61, 143, 162],
    [ 61, 147, 162],
    [ 61, 162, 163],
    [ 62, 166, 164],
    [ 63, 137, 162],
    [ 63, 169, 164],
   array([     1,      2,      2,      1,      4,      1,      1,      2,
         3,      1,      1,      1,      2,      5,      2,      2,
       898,      1,      1,  

这是迄今为止最通用和性能最好的解决方案;很惊讶它还没有发布。

import numpy as np

def unique_count(a):
    unique, inverse = np.unique(a, return_inverse=True)
    count = np.zeros(len(unique), np.int)
    np.add.at(count, inverse, 1)
    return np.vstack(( unique, count)).T

print unique_count(np.random.randint(-10,10,100))

与目前接受的答案不同,它适用于任何可排序的数据类型(不仅仅是正整数),并且具有最佳性能;唯一重要的开销是np.unique所做的排序。

为了计算唯一的非整数——类似于Eelco Hoogendoorn的答案,但速度要快得多(在我的机器上是5倍),我使用了weave。内联组合numpy。只有一点c代码;

import numpy as np
from scipy import weave

def count_unique(datain):
  """
  Similar to numpy.unique function for returning unique members of
  data, but also returns their counts
  """
  data = np.sort(datain)
  uniq = np.unique(data)
  nums = np.zeros(uniq.shape, dtype='int')

  code="""
  int i,count,j;
  j=0;
  count=0;
  for(i=1; i<Ndata[0]; i++){
      count++;
      if(data(i) > data(i-1)){
          nums(j) = count;
          count = 0;
          j++;
      }
  }
  // Handle last value
  nums(j) = count+1;
  """
  weave.inline(code,
      ['data', 'nums'],
      extra_compile_args=['-O2'],
      type_converters=weave.converters.blitz)
  return uniq, nums

配置文件信息

> %timeit count_unique(data)
> 10000 loops, best of 3: 55.1 µs per loop

Eelco的纯numpy版本:

> %timeit unique_count(data)
> 1000 loops, best of 3: 284 µs per loop

Note

这里存在冗余(unique也执行排序),这意味着可以通过将唯一功能放入c-code循环中来进一步优化代码。

像这样的东西应该做到:

#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)

#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
    d[j]+=1   #increment when that value is found

另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。

使用numpy。唯一的return_counts=True (NumPy 1.9+):

import numpy as np

x = np.array([1,1,1,2,2,2,5,25,1,1])
unique, counts = np.unique(x, return_counts=True)

>>> print(np.asarray((unique, counts)).T)
 [[ 1  5]
  [ 2  3]
  [ 5  1]
  [25  1]]

与scipy.stats.itemfreq相比:

In [4]: x = np.random.random_integers(0,100,1e6)

In [5]: %timeit unique, counts = np.unique(x, return_counts=True)
10 loops, best of 3: 31.5 ms per loop

In [6]: %timeit scipy.stats.itemfreq(x)
10 loops, best of 3: 170 ms per loop