我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
当前回答
from collections import Counter
x = array( [1,1,1,2,2,2,5,25,1,1] )
mode = counter.most_common(1)[0][0]
其他回答
像这样的东西应该做到:
#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)
#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
d[j]+=1 #increment when that value is found
另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。
看看np.bincount:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html
import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]
然后:
zip(ii,y[ii])
# [(1, 5), (2, 3), (5, 1), (25, 1)]
or:
np.vstack((ii,y[ii])).T
# array([[ 1, 5],
[ 2, 3],
[ 5, 1],
[25, 1]])
或者你想结合计数和唯一值。
numpy。Bincount可能是最好的选择。如果你的数组除了包含小的密集整数之外还包含任何东西,那么像这样包装它可能是有用的:
def count_unique(keys):
uniq_keys = np.unique(keys)
bins = uniq_keys.searchsorted(keys)
return uniq_keys, np.bincount(bins)
例如:
>>> x = array([1,1,1,2,2,2,5,25,1,1])
>>> count_unique(x)
(array([ 1, 2, 5, 25]), array([5, 3, 1, 1]))
老问题,但我想提供我自己的解决方案,这是最快的,使用普通列表而不是np。数组作为输入(或首先转移到列表),基于我的台架测试。
如果你也遇到这种情况,请检查一下。
def count(a):
results = {}
for x in a:
if x not in results:
results[x] = 1
else:
results[x] += 1
return results
例如,
>>>timeit count([1,1,1,2,2,2,5,25,1,1]) would return:
100000个循环,最好的3:2.26µs每循环
>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]))
100000个回路,最好的3:8.8µs每回路
>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]).tolist())
100000个回路,最佳3:5.85µs每回路
而公认的答案会更慢,而scipy.stats.itemfreq解决方案更糟糕。
更深入的测试并没有证实所制定的期望。
from zmq import Stopwatch
aZmqSTOPWATCH = Stopwatch()
aDataSETasARRAY = ( 100 * abs( np.random.randn( 150000 ) ) ).astype( np.int )
aDataSETasLIST = aDataSETasARRAY.tolist()
import numba
@numba.jit
def numba_bincount( anObject ):
np.bincount( anObject )
return
aZmqSTOPWATCH.start();np.bincount( aDataSETasARRAY );aZmqSTOPWATCH.stop()
14328L
aZmqSTOPWATCH.start();numba_bincount( aDataSETasARRAY );aZmqSTOPWATCH.stop()
592L
aZmqSTOPWATCH.start();count( aDataSETasLIST );aZmqSTOPWATCH.stop()
148609L
参考下面关于影响小型数据集大量重复测试结果的缓存和其他ram内副作用的评论。
尽管这个问题已经得到了回答,但我建议使用一种不同的方法,即numpy.histogram。这样的函数给定一个序列,它返回其元素分组在箱子中的频率。
但是要注意:它在这个例子中是有效的,因为数字是整数。如果它们是实数,那么这个解就不适用了。
>>> from numpy import histogram
>>> y = histogram (x, bins=x.max()-1)
>>> y
(array([5, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1]),
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.,
23., 24., 25.]))