我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
当前回答
使用numpy。唯一的return_counts=True (NumPy 1.9+):
import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
unique, counts = np.unique(x, return_counts=True)
>>> print(np.asarray((unique, counts)).T)
[[ 1 5]
[ 2 3]
[ 5 1]
[25 1]]
与scipy.stats.itemfreq相比:
In [4]: x = np.random.random_integers(0,100,1e6)
In [5]: %timeit unique, counts = np.unique(x, return_counts=True)
10 loops, best of 3: 31.5 ms per loop
In [6]: %timeit scipy.stats.itemfreq(x)
10 loops, best of 3: 170 ms per loop
其他回答
numpy。Bincount可能是最好的选择。如果你的数组除了包含小的密集整数之外还包含任何东西,那么像这样包装它可能是有用的:
def count_unique(keys):
uniq_keys = np.unique(keys)
bins = uniq_keys.searchsorted(keys)
return uniq_keys, np.bincount(bins)
例如:
>>> x = array([1,1,1,2,2,2,5,25,1,1])
>>> count_unique(x)
(array([ 1, 2, 5, 25]), array([5, 3, 1, 1]))
import pandas as pd
import numpy as np
print(pd.Series(name_of_array).value_counts())
多维频率计数,即计数数组。
>>> print(color_array )
array([[255, 128, 128],
[255, 128, 128],
[255, 128, 128],
...,
[255, 128, 128],
[255, 128, 128],
[255, 128, 128]], dtype=uint8)
>>> np.unique(color_array,return_counts=True,axis=0)
(array([[ 60, 151, 161],
[ 60, 155, 162],
[ 60, 159, 163],
[ 61, 143, 162],
[ 61, 147, 162],
[ 61, 162, 163],
[ 62, 166, 164],
[ 63, 137, 162],
[ 63, 169, 164],
array([ 1, 2, 2, 1, 4, 1, 1, 2,
3, 1, 1, 1, 2, 5, 2, 2,
898, 1, 1,
你可以这样写freq_count:
def freq_count(data):
mp = dict();
for i in data:
if i in mp:
mp[i] = mp[i]+1
else:
mp[i] = 1
return mp
使用pandas模块:
>>> import pandas as pd
>>> import numpy as np
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> pd.value_counts(x)
1 5
2 3
25 1
5 1
dtype: int64