我如何有效地获得一个NumPy数组中每个唯一值的频率计数?

>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]

当前回答

像这样的东西应该做到:

#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)

#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
    d[j]+=1   #increment when that value is found

另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。

其他回答

import pandas as pd
import numpy as np

print(pd.Series(name_of_array).value_counts())

你可以这样写freq_count:

def freq_count(data):
    mp = dict();
    for i in data:
        if i in mp:
            mp[i] = mp[i]+1
        else:
            mp[i] = 1
    return mp

老问题,但我想提供我自己的解决方案,这是最快的,使用普通列表而不是np。数组作为输入(或首先转移到列表),基于我的台架测试。

如果你也遇到这种情况,请检查一下。

def count(a):
    results = {}
    for x in a:
        if x not in results:
            results[x] = 1
        else:
            results[x] += 1
    return results

例如,

>>>timeit count([1,1,1,2,2,2,5,25,1,1]) would return:

100000个循环,最好的3:2.26µs每循环

>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]))

100000个回路,最好的3:8.8µs每回路

>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]).tolist())

100000个回路,最佳3:5.85µs每回路

而公认的答案会更慢,而scipy.stats.itemfreq解决方案更糟糕。


更深入的测试并没有证实所制定的期望。

from zmq import Stopwatch
aZmqSTOPWATCH = Stopwatch()

aDataSETasARRAY = ( 100 * abs( np.random.randn( 150000 ) ) ).astype( np.int )
aDataSETasLIST  = aDataSETasARRAY.tolist()

import numba
@numba.jit
def numba_bincount( anObject ):
    np.bincount(    anObject )
    return

aZmqSTOPWATCH.start();np.bincount(    aDataSETasARRAY );aZmqSTOPWATCH.stop()
14328L

aZmqSTOPWATCH.start();numba_bincount( aDataSETasARRAY );aZmqSTOPWATCH.stop()
592L

aZmqSTOPWATCH.start();count(          aDataSETasLIST  );aZmqSTOPWATCH.stop()
148609L

参考下面关于影响小型数据集大量重复测试结果的缓存和其他ram内副作用的评论。

尽管这个问题已经得到了回答,但我建议使用一种不同的方法,即numpy.histogram。这样的函数给定一个序列,它返回其元素分组在箱子中的频率。

但是要注意:它在这个例子中是有效的,因为数字是整数。如果它们是实数,那么这个解就不适用了。

>>> from numpy import histogram
>>> y = histogram (x, bins=x.max()-1)
>>> y
(array([5, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1]),
 array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.,
        12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.,  20.,  21.,  22.,
        23.,  24.,  25.]))

这是迄今为止最通用和性能最好的解决方案;很惊讶它还没有发布。

import numpy as np

def unique_count(a):
    unique, inverse = np.unique(a, return_inverse=True)
    count = np.zeros(len(unique), np.int)
    np.add.at(count, inverse, 1)
    return np.vstack(( unique, count)).T

print unique_count(np.random.randint(-10,10,100))

与目前接受的答案不同,它适用于任何可排序的数据类型(不仅仅是正整数),并且具有最佳性能;唯一重要的开销是np.unique所做的排序。