我如何有效地获得一个NumPy数组中每个唯一值的频率计数?

>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]

当前回答

为了计算唯一的非整数——类似于Eelco Hoogendoorn的答案,但速度要快得多(在我的机器上是5倍),我使用了weave。内联组合numpy。只有一点c代码;

import numpy as np
from scipy import weave

def count_unique(datain):
  """
  Similar to numpy.unique function for returning unique members of
  data, but also returns their counts
  """
  data = np.sort(datain)
  uniq = np.unique(data)
  nums = np.zeros(uniq.shape, dtype='int')

  code="""
  int i,count,j;
  j=0;
  count=0;
  for(i=1; i<Ndata[0]; i++){
      count++;
      if(data(i) > data(i-1)){
          nums(j) = count;
          count = 0;
          j++;
      }
  }
  // Handle last value
  nums(j) = count+1;
  """
  weave.inline(code,
      ['data', 'nums'],
      extra_compile_args=['-O2'],
      type_converters=weave.converters.blitz)
  return uniq, nums

配置文件信息

> %timeit count_unique(data)
> 10000 loops, best of 3: 55.1 µs per loop

Eelco的纯numpy版本:

> %timeit unique_count(data)
> 1000 loops, best of 3: 284 µs per loop

Note

这里存在冗余(unique也执行排序),这意味着可以通过将唯一功能放入c-code循环中来进一步优化代码。

其他回答

像这样的东西应该做到:

#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)

#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
    d[j]+=1   #increment when that value is found

另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。

看看np.bincount:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html

import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]

然后:

zip(ii,y[ii]) 
# [(1, 5), (2, 3), (5, 1), (25, 1)]

or:

np.vstack((ii,y[ii])).T
# array([[ 1,  5],
         [ 2,  3],
         [ 5,  1],
         [25,  1]])

或者你想结合计数和唯一值。

多维频率计数,即计数数组。

>>> print(color_array    )
  array([[255, 128, 128],
   [255, 128, 128],
   [255, 128, 128],
   ...,
   [255, 128, 128],
   [255, 128, 128],
   [255, 128, 128]], dtype=uint8)


>>> np.unique(color_array,return_counts=True,axis=0)
  (array([[ 60, 151, 161],
    [ 60, 155, 162],
    [ 60, 159, 163],
    [ 61, 143, 162],
    [ 61, 147, 162],
    [ 61, 162, 163],
    [ 62, 166, 164],
    [ 63, 137, 162],
    [ 63, 169, 164],
   array([     1,      2,      2,      1,      4,      1,      1,      2,
         3,      1,      1,      1,      2,      5,      2,      2,
       898,      1,      1,  

Most of simple problems get complicated because simple functionality like order() in R that gives a statistical result in both and descending order is missing in various python libraries. But if we devise our thinking that all such statistical ordering and parameters in python are easily found in pandas, we can can result sooner than looking in 100 different places. Also, development of R and pandas go hand-in-hand because they were created for same purpose. To solve this problem I use following code that gets me by anywhere:

unique, counts = np.unique(x, return_counts=True)
d = {'unique':unique, 'counts':count}  # pass the list to a dictionary
df = pd.DataFrame(d) #dictionary object can be easily passed to make a dataframe
df.sort_values(by = 'count', ascending=False, inplace = True)
df = df.reset_index(drop=True) #optional only if you want to use it further
import pandas as pd
import numpy as np
x = np.array( [1,1,1,2,2,2,5,25,1,1] )
print(dict(pd.Series(x).value_counts()))

这会给你: {1,5, 2,3, 5:1, 25: 1}