如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
当前回答
如果您不想明确指定字符串相对于日期时间格式的格式,可以使用此黑客绕过该步骤:
from dateutil.parser import parse
# Function that'll guess the format and convert it into the python datetime format
def update_event(start_datetime=None, end_datetime=None, description=None):
if start_datetime is not None:
new_start_time = parse(start_datetime)
return new_start_time
# Sample input dates in different formats
d = ['06/07/2021 06:40:23.277000', '06/07/2021 06:40', '06/07/2021']
new = [update_event(i) for i in d]
for date in new:
print(date)
# Sample output dates in Python datetime object
# 2014-04-23 00:00:00
# 2013-04-24 00:00:00
# 2014-04-25 00:00:00
如果要将其转换为其他日期时间格式,只需使用您喜欢的格式修改最后一行,例如date.strftime(“%Y/%m/%d%H:%m:%S.%f”):
from dateutil.parser import parse
def update_event(start_datetime=None, end_datetime=None, description=None):
if start_datetime is not None:
new_start_time = parse(start_datetime)
return new_start_time
# Sample input dates in different formats
d = ['06/07/2021 06:40:23.277000', '06/07/2021 06:40', '06/07/2021']
# Passing the dates one by one through the function
new = [update_event(i) for i in d]
for date in new:
print(date.strftime('%Y/%m/%d %H:%M:%S.%f'))
# Sample output dates in required Python datetime object
# 2021/06/07 06:40:23.277000
# 2021/06/07 06:40:00.000000
# 2021/06/07 00:00:00.000000
尝试运行上面的代码段以获得更好的清晰度。
其他回答
以下是使用Pandas将格式化为字符串的日期转换为datetime.date对象的两种解决方案。
import pandas as pd
dates = ['2015-12-25', '2015-12-26']
# 1) Use a list comprehension.
>>> [d.date() for d in pd.to_datetime(dates)]
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
# 2) Convert the dates to a DatetimeIndex and extract the python dates.
>>> pd.DatetimeIndex(dates).date.tolist()
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
计时
dates = pd.DatetimeIndex(start='2000-1-1', end='2010-1-1', freq='d').date.tolist()
>>> %timeit [d.date() for d in pd.to_datetime(dates)]
# 100 loops, best of 3: 3.11 ms per loop
>>> %timeit pd.DatetimeIndex(dates).date.tolist()
# 100 loops, best of 3: 6.85 ms per loop
下面是如何转换OP的原始日期时间示例:
datetimes = ['Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM']
>>> pd.to_datetime(datetimes).to_pydatetime().tolist()
[datetime.datetime(2005, 6, 1, 13, 33),
datetime.datetime(1999, 8, 28, 0, 0)]
使用to_datetime将字符串转换为Pandas时间戳有很多选项,因此如果需要任何特殊信息,请查看文档。
同样,除了.date之外,时间戳还有许多可以访问的财产和方法
使用第三方dateutil库:
from dateutil import parser
parser.parse("Aug 28 1999 12:00AM") # datetime.datetime(1999, 8, 28, 0, 0)
它可以处理大多数日期格式,并且比strptime更方便,因为它通常猜测正确的格式。它对于编写测试也非常有用,因为可读性比性能更重要。
安装时使用:
pip install python-dateutil
我个人喜欢使用解析器模块的解决方案,这是这个问题的第二个答案,非常漂亮,因为您不必构造任何字符串文字就能使其工作。但是,一个缺点是它比strptime的公认答案慢了90%。
from dateutil import parser
from datetime import datetime
import timeit
def dt():
dt = parser.parse("Jun 1 2005 1:33PM")
def strptime():
datetime_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
print(timeit.timeit(stmt=dt, number=10**5))
print(timeit.timeit(stmt=strptime, number=10**5))
输出:
10.702968013429021.3627995655316933
只要你不反复做一百万次,我仍然认为解析器方法更方便,并且可以自动处理大多数时间格式。
您可以使用easy_date简化操作:
import date_converter
converted_date = date_converter.string_to_datetime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
Django时区感知日期时间对象示例。
import datetime
from django.utils.timezone import get_current_timezone
tz = get_current_timezone()
format = '%b %d %Y %I:%M%p'
date_object = datetime.datetime.strptime('Jun 1 2005 1:33PM', format)
date_obj = tz.localize(date_object)
当USE_TZ=True时,这种转换对于Django和Python非常重要:
RuntimeWarning: DateTimeField MyModel.created received a naive datetime (2016-03-04 00:00:00) while time zone support is active.