如何将以下字符串转换为datetime对象?

"Jun 1 2005  1:33PM"

当前回答

#Convert String to datetime
>>> x=datetime.strptime('Jun 1 2005', '%b %d %Y').date()
>>> print(x,type(x))
2005-06-01 00:00:00 <class 'datetime.datetime'>


#Convert datetime to String (Reverse above process)
>>> y=x.strftime('%b %d %Y')
>>> print(y,type(y))
Jun 01 2005 <class 'str'>

其他回答

使用第三方dateutil库:

from dateutil import parser
parser.parse("Aug 28 1999 12:00AM")  # datetime.datetime(1999, 8, 28, 0, 0)

它可以处理大多数日期格式,并且比strptime更方便,因为它通常猜测正确的格式。它对于编写测试也非常有用,因为可读性比性能更重要。

安装时使用:

pip install python-dateutil

我个人喜欢使用解析器模块的解决方案,这是这个问题的第二个答案,非常漂亮,因为您不必构造任何字符串文字就能使其工作。但是,一个缺点是它比strptime的公认答案慢了90%。

from dateutil import parser
from datetime import datetime
import timeit

def dt():
    dt = parser.parse("Jun 1 2005  1:33PM")
def strptime():
    datetime_object = datetime.strptime('Jun 1 2005  1:33PM', '%b %d %Y %I:%M%p')

print(timeit.timeit(stmt=dt, number=10**5))
print(timeit.timeit(stmt=strptime, number=10**5))

输出:

10.702968013429021.3627995655316933

只要你不反复做一百万次,我仍然认为解析器方法更方便,并且可以自动处理大多数时间格式。

以下是使用Pandas将格式化为字符串的日期转换为datetime.date对象的两种解决方案。

import pandas as pd

dates = ['2015-12-25', '2015-12-26']

# 1) Use a list comprehension.
>>> [d.date() for d in pd.to_datetime(dates)]
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]

# 2) Convert the dates to a DatetimeIndex and extract the python dates.
>>> pd.DatetimeIndex(dates).date.tolist()
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]

计时

dates = pd.DatetimeIndex(start='2000-1-1', end='2010-1-1', freq='d').date.tolist()

>>> %timeit [d.date() for d in pd.to_datetime(dates)]
# 100 loops, best of 3: 3.11 ms per loop

>>> %timeit pd.DatetimeIndex(dates).date.tolist()
# 100 loops, best of 3: 6.85 ms per loop

下面是如何转换OP的原始日期时间示例:

datetimes = ['Jun 1 2005  1:33PM', 'Aug 28 1999 12:00AM']

>>> pd.to_datetime(datetimes).to_pydatetime().tolist()
[datetime.datetime(2005, 6, 1, 13, 33), 
 datetime.datetime(1999, 8, 28, 0, 0)]

使用to_datetime将字符串转换为Pandas时间戳有很多选项,因此如果需要任何特殊信息,请查看文档。

同样,除了.date之外,时间戳还有许多可以访问的财产和方法

您可以使用easy_date简化操作:

import date_converter
converted_date = date_converter.string_to_datetime('Jun 1 2005  1:33PM', '%b %d %Y %I:%M%p')

记住这一点,您不需要再次在日期时间转换中感到困惑。

日期时间对象字符串=strptime

datetime对象转换为其他格式=strftime

2005年6月1日下午1:33

等于

%b%d%Y%I:%M%p

%b月作为区域设置的缩写名称(Jun)%d月份的日期,以零填充的小数(1)表示%Y年,以世纪为小数(2015年)%I小时(12小时时钟)为零填充小数(01)%M分钟作为零填充十进制数字(33)%p Locale相当于AM或PM(PM)

所以您需要strptime i-e将字符串转换为

>>> dates = []
>>> dates.append('Jun 1 2005  1:33PM')
>>> dates.append('Aug 28 1999 12:00AM')
>>> from datetime import datetime
>>> for d in dates:
...     date = datetime.strptime(d, '%b %d %Y %I:%M%p')
...     print type(date)
...     print date
... 

输出

<type 'datetime.datetime'>
2005-06-01 13:33:00
<type 'datetime.datetime'>
1999-08-28 00:00:00

如果您有不同的日期格式,您可以使用panda或dateutil.parse

>>> import dateutil
>>> dates = []
>>> dates.append('12 1 2017')
>>> dates.append('1 1 2017')
>>> dates.append('1 12 2017')
>>> dates.append('June 1 2017 1:30:00AM')
>>> [parser.parse(x) for x in dates]

输出

[datetime.datetime(2017, 12, 1, 0, 0), datetime.datetime(2017, 1, 1, 0, 0), datetime.datetime(2017, 1, 12, 0, 0), datetime.datetime(2017, 6, 1, 1, 30)]