如何将以下字符串转换为datetime对象?

"Jun 1 2005  1:33PM"

当前回答

#Convert String to datetime
>>> x=datetime.strptime('Jun 1 2005', '%b %d %Y').date()
>>> print(x,type(x))
2005-06-01 00:00:00 <class 'datetime.datetime'>


#Convert datetime to String (Reverse above process)
>>> y=x.strftime('%b %d %Y')
>>> print(y,type(y))
Jun 01 2005 <class 'str'>

其他回答

datetime.strptime将用户指定格式的输入字符串解析为时区原始日期时间对象:

>>> from datetime import datetime
>>> datetime.strptime('Jun 1 2005  1:33PM', '%b %d %Y %I:%M%p')
datetime.datetime(2005, 6, 1, 13, 33)

要使用现有的datetime对象获取日期对象,请使用.date()对其进行转换:

>>> datetime.strptime('Jun 1 2005', '%b %d %Y').date()
date(2005, 6, 1)

链接:

strptime文档:Python 2、Python 3strptime/strftime格式字符串文档:Python 2,Python 3strftime.org格式字符串备忘单

笔记:

strptime=“字符串解析时间”strftime=“字符串格式时间”

Use:

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()

它显示“开始日期时间”列和“上次登录时间”都是数据帧中的“对象=字符串”:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

    Start Date           1000 non-null object

    Last Login Time      1000 non-null object

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB

通过使用read_csv中的parse_dates选项,可以将字符串datetime转换为panda datetime格式。

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()

输出:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

     Start Date           1000 non-null datetime64[ns]
     Last Login Time      1000 non-null datetime64[ns]

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB

使用第三方dateutil库:

from dateutil import parser
parser.parse("Aug 28 1999 12:00AM")  # datetime.datetime(1999, 8, 28, 0, 0)

它可以处理大多数日期格式,并且比strptime更方便,因为它通常猜测正确的格式。它对于编写测试也非常有用,因为可读性比性能更重要。

安装时使用:

pip install python-dateutil

看看我的答案。

在真实数据中,这是一个真正的问题:多个、不匹配、不完整、不一致和多语言/地区日期格式,通常在一个数据集中自由混合。生产代码失败是不好的,更不用说像狐狸一样高兴异常了。

我们需要尝试。。。捕获多个日期时间格式fmt1,fmt2,。。。,fmtn和抑制/处理所有不匹配的异常(来自strptime())(特别是,避免需要try…catch子句的yukky-n-deep缩进阶梯)。从我的解决方案

def try_strptime(s, fmts=['%d-%b-%y','%m/%d/%Y']):
    for fmt in fmts:
        try:
            return datetime.strptime(s, fmt)
        except:
            continue

    return None # or reraise the ValueError if no format matched, if you prefer

Python>=3.7

要将YYYY-MM-DD字符串转换为datetime对象,可以使用datetime.fromisoformat。

from datetime import datetime

date_string = "2012-12-12 10:10:10"
print (datetime.fromisoformat(date_string))
2012-12-12 10:10:10

文档中的注意事项:

这不支持解析任意的ISO 8601字符串-它只是作为datetime.isoformat()的反操作。第三方包dateutil中提供了一个功能更全面的ISO 8602解析器dateutil.parser.isorse。