如何将以下字符串转换为datetime对象?

"Jun 1 2005  1:33PM"

当前回答

许多时间戳都有一个隐含的时区。为了确保您的代码在每个时区都有效,您应该在内部使用UTC,并在每次外来对象进入系统时附加一个时区。

Python 3.2+:

>>> datetime.datetime.strptime(
...     "March 5, 2014, 20:13:50", "%B %d, %Y, %H:%M:%S"
... ).replace(tzinfo=datetime.timezone(datetime.timedelta(hours=-3)))

这假设您知道偏移量。如果您不知道,但您知道例如位置,您可以使用pytz包查询IANA时区数据库中的偏移量。我将在这里以德黑兰为例,因为它有半小时的偏移量:

>>> tehran = pytz.timezone("Asia/Tehran")
>>> local_time = tehran.localize(
...   datetime.datetime.strptime("March 5, 2014, 20:13:50",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> local_time
datetime.datetime(2014, 3, 5, 20, 13, 50, tzinfo=<DstTzInfo 'Asia/Tehran' +0330+3:30:00 STD>)

如您所见,pytz已确定在特定日期的偏移量为+3:30。您现在可以将其转换为UTC时间,它将应用偏移量:

>>> utc_time = local_time.astimezone(pytz.utc)
>>> utc_time
datetime.datetime(2014, 3, 5, 16, 43, 50, tzinfo=<UTC>)

请注意,采用时区之前的日期会给您带来奇怪的偏移。这是因为IANA决定使用本地平均时间:

>>> chicago = pytz.timezone("America/Chicago")
>>> weird_time = chicago.localize(
...   datetime.datetime.strptime("November 18, 1883, 11:00:00",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> weird_time.astimezone(pytz.utc)
datetime.datetime(1883, 11, 18, 7, 34, tzinfo=<UTC>)

奇怪的“7小时34分钟”源自芝加哥的经度。我使用这个时间戳是因为它正好在芝加哥采用标准时间之前。

其他回答

以下是使用Pandas将格式化为字符串的日期转换为datetime.date对象的两种解决方案。

import pandas as pd

dates = ['2015-12-25', '2015-12-26']

# 1) Use a list comprehension.
>>> [d.date() for d in pd.to_datetime(dates)]
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]

# 2) Convert the dates to a DatetimeIndex and extract the python dates.
>>> pd.DatetimeIndex(dates).date.tolist()
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]

计时

dates = pd.DatetimeIndex(start='2000-1-1', end='2010-1-1', freq='d').date.tolist()

>>> %timeit [d.date() for d in pd.to_datetime(dates)]
# 100 loops, best of 3: 3.11 ms per loop

>>> %timeit pd.DatetimeIndex(dates).date.tolist()
# 100 loops, best of 3: 6.85 ms per loop

下面是如何转换OP的原始日期时间示例:

datetimes = ['Jun 1 2005  1:33PM', 'Aug 28 1999 12:00AM']

>>> pd.to_datetime(datetimes).to_pydatetime().tolist()
[datetime.datetime(2005, 6, 1, 13, 33), 
 datetime.datetime(1999, 8, 28, 0, 0)]

使用to_datetime将字符串转换为Pandas时间戳有很多选项,因此如果需要任何特殊信息,请查看文档。

同样,除了.date之外,时间戳还有许多可以访问的财产和方法

如果您只需要日期格式,则可以通过传递单个字段(如:

>>> import datetime
>>> date = datetime.date(int('2017'),int('12'),int('21'))
>>> date
datetime.date(2017, 12, 21)
>>> type(date)
<type 'datetime.date'>

您可以传递拆分字符串值,将其转换为日期类型,如:

selected_month_rec = '2017-09-01'
date_formate = datetime.date(int(selected_month_rec.split('-')[0]),int(selected_month_rec.split('-')[1]),int(selected_month_rec.split('-')[2]))

您将获得日期格式的结果值。

使用熊猫时间戳似乎是最快的:

import pandas as pd

N = 1000

l = ['Jun 1 2005  1:33PM'] * N

list(pd.to_datetime(l, format=format))

%timeit _ = list(pd.to_datetime(l, format=format))
1.58 ms ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

其他解决方案

from datetime import datetime
%timeit _ = list(map(lambda x: datetime.strptime(x, format), l))
9.41 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

from dateutil.parser import parse
%timeit _ = list(map(lambda x: parse(x), l))
73.8 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

如果字符串是ISO 8601字符串,请使用csio8601:

import ciso8601

l = ['2014-01-09'] * N

%timeit _ = list(map(lambda x: ciso8601.parse_datetime(x), l))
186 µs ± 4.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

arrow为日期和时间提供了许多有用的函数。这段代码为这个问题提供了答案,并表明箭头还能够轻松格式化日期并显示其他地区的信息。

>>> import arrow
>>> dateStrings = [ 'Jun 1  2005 1:33PM', 'Aug 28 1999 12:00AM' ]
>>> for dateString in dateStrings:
...     dateString
...     arrow.get(dateString.replace('  ',' '), 'MMM D YYYY H:mmA').datetime
...     arrow.get(dateString.replace('  ',' '), 'MMM D YYYY H:mmA').format('ddd, Do MMM YYYY HH:mm')
...     arrow.get(dateString.replace('  ',' '), 'MMM D YYYY H:mmA').humanize(locale='de')
...
'Jun 1  2005 1:33PM'
datetime.datetime(2005, 6, 1, 13, 33, tzinfo=tzutc())
'Wed, 1st Jun 2005 13:33'
'vor 11 Jahren'
'Aug 28 1999 12:00AM'
datetime.datetime(1999, 8, 28, 0, 0, tzinfo=tzutc())
'Sat, 28th Aug 1999 00:00'
'vor 17 Jahren'

看见http://arrow.readthedocs.io/en/latest/了解更多信息。

许多时间戳都有一个隐含的时区。为了确保您的代码在每个时区都有效,您应该在内部使用UTC,并在每次外来对象进入系统时附加一个时区。

Python 3.2+:

>>> datetime.datetime.strptime(
...     "March 5, 2014, 20:13:50", "%B %d, %Y, %H:%M:%S"
... ).replace(tzinfo=datetime.timezone(datetime.timedelta(hours=-3)))

这假设您知道偏移量。如果您不知道,但您知道例如位置,您可以使用pytz包查询IANA时区数据库中的偏移量。我将在这里以德黑兰为例,因为它有半小时的偏移量:

>>> tehran = pytz.timezone("Asia/Tehran")
>>> local_time = tehran.localize(
...   datetime.datetime.strptime("March 5, 2014, 20:13:50",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> local_time
datetime.datetime(2014, 3, 5, 20, 13, 50, tzinfo=<DstTzInfo 'Asia/Tehran' +0330+3:30:00 STD>)

如您所见,pytz已确定在特定日期的偏移量为+3:30。您现在可以将其转换为UTC时间,它将应用偏移量:

>>> utc_time = local_time.astimezone(pytz.utc)
>>> utc_time
datetime.datetime(2014, 3, 5, 16, 43, 50, tzinfo=<UTC>)

请注意,采用时区之前的日期会给您带来奇怪的偏移。这是因为IANA决定使用本地平均时间:

>>> chicago = pytz.timezone("America/Chicago")
>>> weird_time = chicago.localize(
...   datetime.datetime.strptime("November 18, 1883, 11:00:00",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> weird_time.astimezone(pytz.utc)
datetime.datetime(1883, 11, 18, 7, 34, tzinfo=<UTC>)

奇怪的“7小时34分钟”源自芝加哥的经度。我使用这个时间戳是因为它正好在芝加哥采用标准时间之前。