如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
当前回答
Django时区感知日期时间对象示例。
import datetime
from django.utils.timezone import get_current_timezone
tz = get_current_timezone()
format = '%b %d %Y %I:%M%p'
date_object = datetime.datetime.strptime('Jun 1 2005 1:33PM', format)
date_obj = tz.localize(date_object)
当USE_TZ=True时,这种转换对于Django和Python非常重要:
RuntimeWarning: DateTimeField MyModel.created received a naive datetime (2016-03-04 00:00:00) while time zone support is active.
其他回答
datetime.strptime将用户指定格式的输入字符串解析为时区原始日期时间对象:
>>> from datetime import datetime
>>> datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
datetime.datetime(2005, 6, 1, 13, 33)
要使用现有的datetime对象获取日期对象,请使用.date()对其进行转换:
>>> datetime.strptime('Jun 1 2005', '%b %d %Y').date()
date(2005, 6, 1)
链接:
strptime文档:Python 2、Python 3strptime/strftime格式字符串文档:Python 2,Python 3strftime.org格式字符串备忘单
笔记:
strptime=“字符串解析时间”strftime=“字符串格式时间”
以下是使用Pandas将格式化为字符串的日期转换为datetime.date对象的两种解决方案。
import pandas as pd
dates = ['2015-12-25', '2015-12-26']
# 1) Use a list comprehension.
>>> [d.date() for d in pd.to_datetime(dates)]
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
# 2) Convert the dates to a DatetimeIndex and extract the python dates.
>>> pd.DatetimeIndex(dates).date.tolist()
[datetime.date(2015, 12, 25), datetime.date(2015, 12, 26)]
计时
dates = pd.DatetimeIndex(start='2000-1-1', end='2010-1-1', freq='d').date.tolist()
>>> %timeit [d.date() for d in pd.to_datetime(dates)]
# 100 loops, best of 3: 3.11 ms per loop
>>> %timeit pd.DatetimeIndex(dates).date.tolist()
# 100 loops, best of 3: 6.85 ms per loop
下面是如何转换OP的原始日期时间示例:
datetimes = ['Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM']
>>> pd.to_datetime(datetimes).to_pydatetime().tolist()
[datetime.datetime(2005, 6, 1, 13, 33),
datetime.datetime(1999, 8, 28, 0, 0)]
使用to_datetime将字符串转换为Pandas时间戳有很多选项,因此如果需要任何特殊信息,请查看文档。
同样,除了.date之外,时间戳还有许多可以访问的财产和方法
In [34]: import datetime
In [35]: _now = datetime.datetime.now()
In [36]: _now
Out[36]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [37]: print _now
2016-01-19 09:47:00.432000
In [38]: _parsed = datetime.datetime.strptime(str(_now),"%Y-%m-%d %H:%M:%S.%f")
In [39]: _parsed
Out[39]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [40]: assert _now == _parsed
这将有助于将字符串转换为datetime和时区:
def convert_string_to_time(date_string, timezone):
from datetime import datetime
import pytz
date_time_obj = datetime.strptime(date_string[:26], '%Y-%m-%d %H:%M:%S.%f')
date_time_obj_timezone = pytz.timezone(timezone).localize(date_time_obj)
return date_time_obj_timezone
date = '2018-08-14 13:09:24.543953+00:00'
TIME_ZONE = 'UTC'
date_time_obj_timezone = convert_string_to_time(date, TIME_ZONE)
记住这一点,您不需要再次在日期时间转换中感到困惑。
日期时间对象字符串=strptime
datetime对象转换为其他格式=strftime
2005年6月1日下午1:33
等于
%b%d%Y%I:%M%p
%b月作为区域设置的缩写名称(Jun)%d月份的日期,以零填充的小数(1)表示%Y年,以世纪为小数(2015年)%I小时(12小时时钟)为零填充小数(01)%M分钟作为零填充十进制数字(33)%p Locale相当于AM或PM(PM)
所以您需要strptime i-e将字符串转换为
>>> dates = []
>>> dates.append('Jun 1 2005 1:33PM')
>>> dates.append('Aug 28 1999 12:00AM')
>>> from datetime import datetime
>>> for d in dates:
... date = datetime.strptime(d, '%b %d %Y %I:%M%p')
... print type(date)
... print date
...
输出
<type 'datetime.datetime'>
2005-06-01 13:33:00
<type 'datetime.datetime'>
1999-08-28 00:00:00
如果您有不同的日期格式,您可以使用panda或dateutil.parse
>>> import dateutil
>>> dates = []
>>> dates.append('12 1 2017')
>>> dates.append('1 1 2017')
>>> dates.append('1 12 2017')
>>> dates.append('June 1 2017 1:30:00AM')
>>> [parser.parse(x) for x in dates]
输出
[datetime.datetime(2017, 12, 1, 0, 0), datetime.datetime(2017, 1, 1, 0, 0), datetime.datetime(2017, 1, 12, 0, 0), datetime.datetime(2017, 6, 1, 1, 30)]