有符号整数和无符号整数之间的区别是:

Unsigned值可以是一个较大的正数,而不能是负数。 Unsigned版本使用前导位作为值的一部分,而signed版本使用最左边的位来识别数字是正还是负。 有符号整数可以同时包含正数和负数。

还有其他区别吗?


当前回答

Signed integers in C represent numbers. If a and b are variables of signed integer types, the standard will never require that a compiler make the expression a+=b store into a anything other than the arithmetic sum of their respective values. To be sure, if the arithmetic sum would not fit into a, the processor might not be able to put it there, but the standard would not require the compiler to truncate or wrap the value, or do anything else for that matter if values that exceed the limits for their types. Note that while the standard does not require it, C implementations are allowed to trap arithmetic overflows with signed values.

Unsigned integers in C behave as abstract algebraic rings of integers which are congruent modulo some power of two, except in scenarios involving conversions to, or operations with, larger types. Converting an integer of any size to a 32-bit unsigned type will yield the member corresponding to things which are congruent to that integer mod 4,294,967,296. The reason subtracting 3 from 2 yields 4,294,967,295 is that adding something congruent to 3 to something congruent to 4,294,967,295 will yield something congruent to 2.

Abstract algebraic rings types are often handy things to have; unfortunately, C uses signedness as the deciding factor for whether a type should behave as a ring. Worse, unsigned values are treated as numbers rather than ring members when converted to larger types, and unsigned values smaller than int get converted to numbers when any arithmetic is performed upon them. If v is a uint32_t which equals 4,294,967,294, then v*=v; should make v=4. Unfortunately, if int is 64 bits, then there's no telling what v*=v; could do.

鉴于标准的现状,我建议在需要与代数环相关的行为时使用无符号类型,在需要表示数字时使用有符号类型。不幸的是,C以这种方式进行了区分,但它们就是它们。

其他回答

他只问了签过名和没签过名的。不知道为什么人们要在里面加额外的东西。让我来告诉你答案。

Unsigned:它只包含非负值,即0到255。 Signed:由正负值组成,但格式不同,如 0 ~ +127 -1 ~ -128

这个解释是关于8位数字系统的。

一般来说,这是正确的。在不知道你为什么要寻找差异的情况下,我想不出有符号和无符号之间的任何其他区别。

在嵌入式系统上编程时,必须使用无符号整数。在循环中,当不需要有符号整数时,使用无符号整数将节省设计此类系统所需的安全。

在C语言中,有符号值和无符号值之间唯一保证的区别是有符号值可以为负、0或正,而无符号值只能为0或正。问题是C语言没有定义类型的格式(所以你不知道你的整数是2的补数)。严格来说,你提到的前两点是不正确的。

这都是关于建模的: 当您想要设计一台计算机时,您需要采用约定来表示数据以及如何计算它们。当然,为不同的模型提供不同的操作和属性(性能、所需的内存空间、硬件实现复杂性等)。

事实证明,通过基于电学(因此是电子学)的计算,我们发现表示信息的最方便的方法是使用电压级别. ...计算这些电压水平最方便的方法是考虑两种状态:有电压和没有电压。 “bit”来了。

这就是为什么我们用二进制来表示数字:一系列高电压(1)或低电压(0)的电子引脚。

但是,如果使用二进制计数,则只能表示自然数(0,1,2,…)。正好是2^n (n是比特数)个数。

如果您确保第一个操作数大于第二个操作数,则允许您执行加法、乘法、除法和减法,如果检查结果不超过您拥有的比特数,则结束。

然后,一些聪明的家伙过来问:“当你用m >n做n - m时会发生什么,使用完全相同的算法?”

...实际情况是这样的:你只需要在你的数字上加上1,如果你在后面有进位(环绕),然后考虑这两个都是0…0和1…1代表0。这是1的补1的_complement 然而,这样做,你必须为符号保留一个位。从技术上讲,你可以表示-(2^(n-1)-1)≤n≤2^(n-1)-1的值 它们是:(2^n)-1(0的两种表示)。在这种表示中,你只需要交换所有的位来求负数。

然后,更聪明的家伙过来告诉我:“如果我们认为当我们对数字进行否定时,总是会有一个环绕呢?”……这意味着你在交换了比特之后再加一个。得到2的补2的补 使用它,你的0只有一个表示,你可以再次表示2^n个数字(2^(n-1)≤n≤2^(n-1)-1)。加上,a-b的计算实际上就是a+(-b),这只需要两种操作:add(a, add(swap(b), 1)))

2补的另一个好处是,加法算法和无符号算法是一样的。因此,您将获得相同的属性,并使用相同的硬件来完成这两项任务。这就是为什么它是大多数计算机使用的表示法。

简而言之,有符号和无符号可以表示相同的数字计数,但在不同的范围内,现在,您可以准确地知道其中的原因了。有关获得的代数结构的更多详细信息,请阅读此响应:https://stackoverflow.com/a/23304179/1745291

然后根据上下文使用一个或另一个(注意,对于某些操作,如<,强制转换时的处理是不同的:((signed) -1) < 5但((unsigned) -1) > 5