我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

嘿,使用带有lambda的apply函数来加速这个过程:

def normalize(df_col):

  # Condition to exclude 'ID' and 'Class' feature
  if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
        max_value = df_col.max()
        min_value = df_col.min()

        #It avoids NaN and return 0 instead
        if max_value == min_value:
          return 0

        sub_value = max_value - min_value
        return np.divide(np.subtract(df_col,min_value),sub_value)
  else:
        return df_col

 df_normalize = df.apply(lambda x :normalize(x))

其他回答

使用Pandas的一个简单方法:(这里我想使用均值归一化)

normalized_df=(df-df.mean())/df.std()

使用最小-最大归一化:

normalized_df=(df-df.min())/(df.max()-df.min())

编辑:为了解决一些问题,需要说明Pandas在上面的代码中自动应用列函数。

嘿,使用带有lambda的apply函数来加速这个过程:

def normalize(df_col):

  # Condition to exclude 'ID' and 'Class' feature
  if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
        max_value = df_col.max()
        min_value = df_col.min()

        #It avoids NaN and return 0 instead
        if max_value == min_value:
          return 0

        sub_value = max_value - min_value
        return np.divide(np.subtract(df_col,min_value),sub_value)
  else:
        return df_col

 df_normalize = df.apply(lambda x :normalize(x))

你可以在一行中完成

DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)

它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。

我认为在熊猫身上更好的方法是

df = df/df.max().astype(np.float64)

如果在你的数据帧中出现负数,你应该用负数代替

df = df/df.loc[df.abs().idxmax()].astype(np.float64)

你可能想让一些列被标准化,而其他的列是不变的,比如一些回归任务,数据标签或分类列是不变的,所以我建议你用这种python的方式(它是@shg和@Cina答案的组合):

features_to_normalize = ['A', 'B', 'C']
# could be ['A','B'] 

df[features_to_normalize] = df[features_to_normalize].apply(lambda x:(x-x.min()) / (x.max()-x.min()))