我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
你可以简单地使用pandas.DataFrame。Transform1函数如下所示:
df.transform(lambda x: x/x.max())
其他回答
你的问题实际上是一个作用于列的简单变换:
def f(s):
return s/s.max()
frame.apply(f, axis=0)
或者更简洁:
frame.apply(lambda x: x/x.max(), axis=0)
嘿,使用带有lambda的apply函数来加速这个过程:
def normalize(df_col):
# Condition to exclude 'ID' and 'Class' feature
if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
max_value = df_col.max()
min_value = df_col.min()
#It avoids NaN and return 0 instead
if max_value == min_value:
return 0
sub_value = max_value - min_value
return np.divide(np.subtract(df_col,min_value),sub_value)
else:
return df_col
df_normalize = df.apply(lambda x :normalize(x))
您可以使用sklearn包及其相关的预处理实用程序来规范化数据。
import pandas as pd
from sklearn import preprocessing
x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)
有关更多信息,请参阅scikit-learn关于预处理数据的文档:将特性扩展到一个范围。
df_normalized = df / df.max(axis=0)
下面的函数计算Z分数:
def standardization(dataset):
""" Standardization of numeric fields, where all values will have mean of zero
and standard deviation of one. (z-score)
Args:
dataset: A `Pandas.Dataframe`
"""
dtypes = list(zip(dataset.dtypes.index, map(str, dataset.dtypes)))
# Normalize numeric columns.
for column, dtype in dtypes:
if dtype == 'float32':
dataset[column] -= dataset[column].mean()
dataset[column] /= dataset[column].std()
return dataset