我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

你的问题实际上是一个作用于列的简单变换:

def f(s):
    return s/s.max()

frame.apply(f, axis=0)

或者更简洁:

   frame.apply(lambda x: x/x.max(), axis=0)

其他回答

您可以使用sklearn包及其相关的预处理实用程序来规范化数据。

import pandas as pd
from sklearn import preprocessing

x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)

有关更多信息,请参阅scikit-learn关于预处理数据的文档:将特性扩展到一个范围。

注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。


简单就是美:

df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()

如果你的数据是正倾斜的,最好的归一化方法是使用对数变换:

df = np.log10(df)
def normalize(x):
    try:
        x = x/np.linalg.norm(x,ord=1)
        return x
    except :
        raise
data = pd.DataFrame.apply(data,normalize)

根据pandas的文档,DataFrame结构可以对自身应用操作(函数)。

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

沿着数据帧的输入轴应用函数。 传递给函数的对象是具有DataFrame的索引(轴=0)或列(轴=1)索引的Series对象。返回类型取决于传递的函数是否聚合,如果DataFrame为空则使用reduce参数。

您可以应用自定义函数来操作DataFrame。

你的问题实际上是一个作用于列的简单变换:

def f(s):
    return s/s.max()

frame.apply(f, axis=0)

或者更简洁:

   frame.apply(lambda x: x/x.max(), axis=0)