我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

def normalize(x):
    try:
        x = x/np.linalg.norm(x,ord=1)
        return x
    except :
        raise
data = pd.DataFrame.apply(data,normalize)

根据pandas的文档,DataFrame结构可以对自身应用操作(函数)。

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

沿着数据帧的输入轴应用函数。 传递给函数的对象是具有DataFrame的索引(轴=0)或列(轴=1)索引的Series对象。返回类型取决于传递的函数是否聚合,如果DataFrame为空则使用reduce参数。

您可以应用自定义函数来操作DataFrame。

其他回答

df_normalized = df / df.max(axis=0)

基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range

您可以执行以下操作:

def normalize(df):
    result = df.copy()
    for feature_name in df.columns:
        max_value = df[feature_name].max()
        min_value = df[feature_name].min()
        result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
    return result

你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。

这只是简单的数学。答案应该如下所示。

normed_df = (df - df.min()) / (df.max() - df.min())

归一化方法的详细示例

熊猫正常化(无偏) Sklearn归一化(有偏) 有偏见vs无偏见会影响机器学习吗? Mix-max扩展

引用: 维基百科:标准偏差的无偏估计

示例数据

import pandas as pd
df = pd.DataFrame({
               'A':[1,2,3],
               'B':[100,300,500],
               'C':list('abc')
             })
print(df)
   A    B  C
0  1  100  a
1  2  300  b
2  3  500  c

使用熊猫进行标准化(给出无偏倚的估计)

当归一化时,我们只需减去平均值并除以标准差。

df.iloc[:,0:-1] = df.iloc[:,0:-1].apply(lambda x: (x-x.mean())/ x.std(), axis=0)
print(df)
     A    B  C
0 -1.0 -1.0  a
1  0.0  0.0  b
2  1.0  1.0  c

使用sklearn进行标准化(给出有偏差的估计,与熊猫不同)

如果你用sklearn做同样的事情,你会得到不同的输出!

import pandas as pd

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()


df = pd.DataFrame({
               'A':[1,2,3],
               'B':[100,300,500],
               'C':list('abc')
             })
df.iloc[:,0:-1] = scaler.fit_transform(df.iloc[:,0:-1].to_numpy())
print(df)
          A         B  C
0 -1.224745 -1.224745  a
1  0.000000  0.000000  b
2  1.224745  1.224745  c

对sklearn有偏见的估计会降低机器学习的能力吗?

NO.

sklearn.预处理.scale的官方文档指出,使用偏估计器不太可能影响机器学习算法的性能,我们可以安全地使用它们。

来自官方文件:

我们对标准偏差使用一个有偏估计器,相当于numpy。性病(x, ddof = 0)。注意ddof的选择不太可能影响模型性能。

那MinMax Scaling呢?

在最小最大值缩放中没有标准偏差计算。所以熊猫和scikit-learn的结果是一样的。

import pandas as pd
df = pd.DataFrame({
               'A':[1,2,3],
               'B':[100,300,500],
             })
(df - df.min()) / (df.max() - df.min())
     A    B
0  0.0  0.0
1  0.5  0.5
2  1.0  1.0


# Using sklearn
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() 
arr_scaled = scaler.fit_transform(df) 

print(arr_scaled)
[[0.  0. ]
 [0.5 0.5]
 [1.  1. ]]

df_scaled = pd.DataFrame(arr_scaled, columns=df.columns,index=df.index)
print(df_scaled)
     A    B
0  0.0  0.0
1  0.5  0.5
2  1.0  1.0

正常化

您可以使用minmax_scale将每一列转换为从0到1的刻度。

from sklearn.preprocessing import minmax_scale
df[:] = minmax_scale(df)

标准化

您可以使用比例将每列居中到平均值,并缩放到单位方差。

from sklearn.preprocessing import scale
df[:] = scale(df)

列的子集

归一化单列

from sklearn.preprocessing import minmax_scale
df['a'] = minmax_scale(df['a'])

只归一化数值列

import numpy as np
from sklearn.preprocessing import minmax_scale
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

完整的示例

# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import minmax_scale

# Sample data
df = pd.DataFrame({'a':[0,1,2], 'b':[-10,-30,-50], 'c':['x', 'y', 'z']})

# MinMax normalize all numeric columns
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

# Result
print(df)

#    a    b  c
# 0  0.0  1.0  x
# 2  0.5  0.5  y
# 3  1.0  0.0  z

注:

在所有示例中,可以使用scale来代替minmax_scale。保持索引、列名或非数值变量不变。函数应用于每一列。

警告:

对于机器学习,可以使用minmax_scale或train_test_split后的scale来避免数据泄露。

Info

更多关于标准化和规范化的信息:

https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/ https://en.wikipedia.org/wiki/Normalization_(统计) https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing