我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
def normalize(x):
try:
x = x/np.linalg.norm(x,ord=1)
return x
except :
raise
data = pd.DataFrame.apply(data,normalize)
根据pandas的文档,DataFrame结构可以对自身应用操作(函数)。
DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
沿着数据帧的输入轴应用函数。 传递给函数的对象是具有DataFrame的索引(轴=0)或列(轴=1)索引的Series对象。返回类型取决于传递的函数是否聚合,如果DataFrame为空则使用reduce参数。
您可以应用自定义函数来操作DataFrame。
其他回答
睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。
我对这类问题的解决方案如下:
from sklearn import preprocesing
x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_new = pd.DataFrame(x_scaled)
df = pd.concat([df.Categoricals,x_new])
我认为在熊猫身上更好的方法是
df = df/df.max().astype(np.float64)
如果在你的数据帧中出现负数,你应该用负数代替
df = df/df.loc[df.abs().idxmax()].astype(np.float64)
要规范化一个DataFrame列,只使用本机Python。
不同的值会影响过程,例如图的颜色。
0到1之间:
min_val = min(list(df['col']))
max_val = max(list(df['col']))
df['col'] = [(x - min_val) / max_val for x in df['col']]
-1 ~ 1:
df['col'] = [float(i)/sum(df['col']) for i in df['col']]
OR
df['col'] = [float(tp) / max(abs(df['col'])) for tp in df['col']]
如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(df)
df.loc[:,:] = scaled_values
df_normalized = df / df.max(axis=0)