背景

我刚刚把我的熊猫从0.11升级到0.13.0rc1。现在,应用程序弹出了许多新的警告。其中一个是这样的:

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE

我想知道这到底是什么意思?我需要改变什么吗?

如果我坚持使用quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE,我应该如何暂停警告?

给出错误的函数

def _decode_stock_quote(list_of_150_stk_str):
    """decode the webpage and return dataframe"""

    from cStringIO import StringIO

    str_of_all = "".join(list_of_150_stk_str)

    quote_df = pd.read_csv(StringIO(str_of_all), sep=',', names=list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg')) #dtype={'A': object, 'B': object, 'C': np.float64}
    quote_df.rename(columns={'A':'STK', 'B':'TOpen', 'C':'TPCLOSE', 'D':'TPrice', 'E':'THigh', 'F':'TLow', 'I':'TVol', 'J':'TAmt', 'e':'TDate', 'f':'TTime'}, inplace=True)
    quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]
    quote_df['TClose'] = quote_df['TPrice']
    quote_df['RT']     = 100 * (quote_df['TPrice']/quote_df['TPCLOSE'] - 1)
    quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
    quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
    quote_df['STK_ID'] = quote_df['STK'].str.slice(13,19)
    quote_df['STK_Name'] = quote_df['STK'].str.slice(21,30)#.decode('gb2312')
    quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])
    
    return quote_df

更多错误消息

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
E:\FinReporter\FM_EXT.py:450: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
E:\FinReporter\FM_EXT.py:453: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])

当前回答

由于这个问题已经在现有的答案中得到了充分的解释和讨论,因此我将提供一种简洁的使用pandas的上下文管理器方法。Option_context(链接到文档和示例)-绝对没有必要创建一个带有所有dunder方法和其他花哨功能的自定义类。

首先是上下文管理器代码本身:

from contextlib import contextmanager

@contextmanager
def SuppressPandasWarning():
    with pd.option_context("mode.chained_assignment", None):
        yield

然后是一个例子:

import pandas as pd
from string import ascii_letters

a = pd.DataFrame({"A": list(ascii_letters[0:4]), "B": range(0,4)})

mask = a["A"].isin(["c", "d"])
# Even shallow copy below is enough to not raise the warning, but why is a mystery to me.
b = a.loc[mask]  # .copy(deep=False)

# Raises the `SettingWithCopyWarning`
b["B"] = b["B"] * 2

# Does not!
with SuppressPandasWarning():
    b["B"] = b["B"] * 2

值得注意的是,这两种方法都不修改a,这让我有点惊讶,即使是带有.copy(deep=False)的浅df复制也会防止引发这个警告(据我所知,浅复制至少也应该修改a,但它没有。熊猫魔法)。

其他回答

一般来说,SettingWithCopyWarning的目的是向用户(尤其是新用户)表明,他们可能正在对一个副本进行操作,而不是他们所认为的原始版本。有假阳性(低,如果你知道你在做什么,它可能是好的)。一种可能是像@Garrett建议的那样关闭警告(默认为warn)。

这是另一种选择:

In [1]: df = DataFrame(np.random.randn(5, 2), columns=list('AB'))

In [2]: dfa = df.ix[:, [1, 0]]

In [3]: dfa.is_copy
Out[3]: True

In [4]: dfa['A'] /= 2
/usr/local/bin/ipython:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  #!/usr/local/bin/python

你可以将is_copy标志设置为False,这将有效地关闭该对象的检查:

In [5]: dfa.is_copy = False

In [6]: dfa['A'] /= 2

如果显式复制,则不会发生进一步的警告:

In [7]: dfa = df.ix[:, [1, 0]].copy()

In [8]: dfa['A'] /= 2

上面OP显示的代码虽然是合法的,而且可能也是我所做的,但从技术上讲,它是这个警告的一个案例,而不是误报。另一种没有警告的方法是通过重新索引来执行选择操作,例如:

quote_df = quote_df.reindex(columns=['STK', ...])

Or,

quote_df = quote_df.reindex(['STK', ...], axis=1)  # v.0.21

有些人可能只是想压制这个警告:

class SupressSettingWithCopyWarning:
    def __enter__(self):
        pd.options.mode.chained_assignment = None

    def __exit__(self, *args):
        pd.options.mode.chained_assignment = 'warn'

with SupressSettingWithCopyWarning():
    #code that produces warning

由于这个问题已经在现有的答案中得到了充分的解释和讨论,因此我将提供一种简洁的使用pandas的上下文管理器方法。Option_context(链接到文档和示例)-绝对没有必要创建一个带有所有dunder方法和其他花哨功能的自定义类。

首先是上下文管理器代码本身:

from contextlib import contextmanager

@contextmanager
def SuppressPandasWarning():
    with pd.option_context("mode.chained_assignment", None):
        yield

然后是一个例子:

import pandas as pd
from string import ascii_letters

a = pd.DataFrame({"A": list(ascii_letters[0:4]), "B": range(0,4)})

mask = a["A"].isin(["c", "d"])
# Even shallow copy below is enough to not raise the warning, but why is a mystery to me.
b = a.loc[mask]  # .copy(deep=False)

# Raises the `SettingWithCopyWarning`
b["B"] = b["B"] * 2

# Does not!
with SuppressPandasWarning():
    b["B"] = b["B"] * 2

值得注意的是,这两种方法都不修改a,这让我有点惊讶,即使是带有.copy(deep=False)的浅df复制也会防止引发这个警告(据我所知,浅复制至少也应该修改a,但它没有。熊猫魔法)。

如果你已经将切片分配给一个变量,并希望像下面这样使用变量进行设置:

df2 = df[df['A'] > 2]
df2['B'] = value

如果你不想使用Jeff的解,因为你计算df2的条件太长或其他原因,那么你可以使用以下方法:

df.loc[df2.index.tolist(), 'B'] = value

df2.index.tolist()返回df2中所有条目的索引,这些索引将用于设置原始数据框架中的列B。

这可能只适用于NumPy,这意味着你可能需要导入它,但我为示例NumPy使用的数据在计算中不是必需的,但你可以简单地通过使用下面这一行代码来停止这个设置和复制警告消息:

np.warnings.filterwarnings('ignore')