背景

我刚刚把我的熊猫从0.11升级到0.13.0rc1。现在,应用程序弹出了许多新的警告。其中一个是这样的:

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE

我想知道这到底是什么意思?我需要改变什么吗?

如果我坚持使用quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE,我应该如何暂停警告?

给出错误的函数

def _decode_stock_quote(list_of_150_stk_str):
    """decode the webpage and return dataframe"""

    from cStringIO import StringIO

    str_of_all = "".join(list_of_150_stk_str)

    quote_df = pd.read_csv(StringIO(str_of_all), sep=',', names=list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg')) #dtype={'A': object, 'B': object, 'C': np.float64}
    quote_df.rename(columns={'A':'STK', 'B':'TOpen', 'C':'TPCLOSE', 'D':'TPrice', 'E':'THigh', 'F':'TLow', 'I':'TVol', 'J':'TAmt', 'e':'TDate', 'f':'TTime'}, inplace=True)
    quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]
    quote_df['TClose'] = quote_df['TPrice']
    quote_df['RT']     = 100 * (quote_df['TPrice']/quote_df['TPCLOSE'] - 1)
    quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
    quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
    quote_df['STK_ID'] = quote_df['STK'].str.slice(13,19)
    quote_df['STK_Name'] = quote_df['STK'].str.slice(21,30)#.decode('gb2312')
    quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])
    
    return quote_df

更多错误消息

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
E:\FinReporter\FM_EXT.py:450: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
E:\FinReporter\FM_EXT.py:453: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])

当前回答

这里我直接回答这个问题。我们该如何应对呢?

在切片后创建.copy(deep=False)。看到pandas.DataFrame.copy。

等等,切片不是会返回副本吗?毕竟,这就是警告信息试图表达的意思?阅读长答案:

import pandas as pd
df = pd.DataFrame({'x':[1,2,3]})

这给出了一个警告:

df0 = df[df.x>2]
df0['foo'] = 'bar'

这不是:

df1 = df[df.x>2].copy(deep=False)
df1['foo'] = 'bar'

df0和df1都是DataFrame对象,但它们的某些不同之处使pandas能够打印警告。让我们来看看它是什么。

import inspect
slice= df[df.x>2]
slice_copy = df[df.x>2].copy(deep=False)
inspect.getmembers(slice)
inspect.getmembers(slice_copy)

使用你选择的diff工具,你会发现除了几个地址之外,唯一的实质性区别是:

|          | slice   | slice_copy |
| _is_copy | weakref | None       |

决定是否警告的方法是DataFrame。_check_setitem_copy检查_is_copy。给你。做一个拷贝,这样你的DataFrame就不是_is_copy。

警告建议使用.loc,但如果您在_is_copy的帧上使用.loc,仍然会得到相同的警告。误导?是的。烦人吗?你的赌注。有用吗?可能,当使用链式赋值时。但是它不能正确地检测链赋值,并且不加区别地输出警告。

其他回答

这可能只适用于NumPy,这意味着你可能需要导入它,但我为示例NumPy使用的数据在计算中不是必需的,但你可以简单地通过使用下面这一行代码来停止这个设置和复制警告消息:

np.warnings.filterwarnings('ignore')

对我来说奏效了:

import pandas as pd
# ...
pd.set_option('mode.chained_assignment', None)

如果你已经将切片分配给一个变量,并希望像下面这样使用变量进行设置:

df2 = df[df['A'] > 2]
df2['B'] = value

如果你不想使用Jeff的解,因为你计算df2的条件太长或其他原因,那么你可以使用以下方法:

df.loc[df2.index.tolist(), 'B'] = value

df2.index.tolist()返回df2中所有条目的索引,这些索引将用于设置原始数据框架中的列B。

这应该可以工作:

quote_df.loc[:,'TVol'] = quote_df['TVol']/TVOL_SCALE

这个话题真的让熊猫很困惑。幸运的是,它有一个相对简单的解决方案。

问题是数据过滤操作(例如loc)是否返回DataFrame的副本或视图并不总是明确的。因此,进一步使用这种过滤后的DataFrame可能会令人困惑。

简单的解决方案是(除非你需要处理非常大的数据集):

无论何时需要更新任何值,总是确保在赋值之前显式复制DataFrame。

df  # Some DataFrame
df = df.loc[:, 0:2]  # Some filtering (unsure whether a view or copy is returned)
df = df.copy()  # Ensuring a copy is made
df[df["Name"] == "John"] = "Johny"  # Assignment can be done now (no warning)