背景

我刚刚把我的熊猫从0.11升级到0.13.0rc1。现在,应用程序弹出了许多新的警告。其中一个是这样的:

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE

我想知道这到底是什么意思?我需要改变什么吗?

如果我坚持使用quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE,我应该如何暂停警告?

给出错误的函数

def _decode_stock_quote(list_of_150_stk_str):
    """decode the webpage and return dataframe"""

    from cStringIO import StringIO

    str_of_all = "".join(list_of_150_stk_str)

    quote_df = pd.read_csv(StringIO(str_of_all), sep=',', names=list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg')) #dtype={'A': object, 'B': object, 'C': np.float64}
    quote_df.rename(columns={'A':'STK', 'B':'TOpen', 'C':'TPCLOSE', 'D':'TPrice', 'E':'THigh', 'F':'TLow', 'I':'TVol', 'J':'TAmt', 'e':'TDate', 'f':'TTime'}, inplace=True)
    quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]
    quote_df['TClose'] = quote_df['TPrice']
    quote_df['RT']     = 100 * (quote_df['TPrice']/quote_df['TPCLOSE'] - 1)
    quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
    quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
    quote_df['STK_ID'] = quote_df['STK'].str.slice(13,19)
    quote_df['STK_Name'] = quote_df['STK'].str.slice(21,30)#.decode('gb2312')
    quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])
    
    return quote_df

更多错误消息

E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TVol']   = quote_df['TVol']/TVOL_SCALE
E:\FinReporter\FM_EXT.py:450: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TAmt']   = quote_df['TAmt']/TAMT_SCALE
E:\FinReporter\FM_EXT.py:453: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
  quote_df['TDate']  = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])

当前回答

如何处理SettingWithCopyWarning在熊猫?

这篇文章的读者是:

想知道这个警告是什么意思吗 想了解压制这种警告的不同方法吗 想了解如何改进他们的代码,并遵循良好的实践,以避免在未来出现这种警告。

设置

np.random.seed(0)
df = pd.DataFrame(np.random.choice(10, (3, 5)), columns=list('ABCDE'))
df
   A  B  C  D  E
0  5  0  3  3  7
1  9  3  5  2  4
2  7  6  8  8  1

什么是SettingWithCopyWarning?

要知道如何处理这个警告,首先要理解它的含义以及为什么会提出这个警告。

过滤dataframe时,可以对帧进行切片/索引以返回视图或副本,这取决于内部布局和各种实现细节。顾名思义,“视图”是原始数据的视图,因此修改视图可能会修改原始对象。另一方面,“副本”是原始数据的复制,修改副本对原始数据没有影响。

正如其他答案所提到的,SettingWithCopyWarning被创建来标记“链式赋值”操作。考虑上面设置中的df。假设您想要选择列“B”中的所有值,其中列“A”中的值为> 5。Pandas允许您以不同的方式做到这一点,有些方式比其他方式更正确。例如,

df[df.A > 5]['B']

1    3
2    6
Name: B, dtype: int64

And,

df.loc[df.A > 5, 'B']

1    3
2    6
Name: B, dtype: int64

它们返回相同的结果,因此如果只读取这些值,则没有区别。那么,问题是什么呢?链式赋值的问题是,通常很难预测返回的是视图还是副本,所以当您试图赋值时,这在很大程度上成为一个问题。在前面例子的基础上,考虑一下这段代码是如何被解释器执行的:

df.loc[df.A > 5, 'B'] = 4
# becomes
df.__setitem__((df.A > 5, 'B'), 4)

用一个__setitem__调用df。OTOH,考虑下面的代码:

df[df.A > 5]['B'] = 4
# becomes
df.__getitem__(df.A > 5).__setitem__('B', 4)

现在,根据__getitem__返回的是视图还是副本,__setitem__操作可能无法工作。

一般来说,应该使用loc进行基于标签的赋值,使用iloc进行基于整数/位置的赋值,因为规范保证它们总是对原始值进行操作。此外,要设置单个单元格,应该使用at和iat。

更多信息可以在文档中找到。

请注意 所有用loc完成的布尔索引操作也可以用iloc完成。唯一的区别是iloc希望两者都有 索引的整数/位置或布尔值的numpy数组,以及 列的整数/位置索引。 例如, df.loc (df。A > 5, ' b '] = 4 可以写成nas df.iloc [(df。A > 5).values, 1] = 4 而且, df。loc[1, 'A'] = 100 可以写成 df。Iloc [1,0] = 100 等等。


告诉我怎么消除警告!

考虑df的“a”列上的一个简单操作。选择“A”并除以2将会发出警告,但操作是有效的。

df2 = df[['A']]
df2['A'] /= 2
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/IPython/__main__.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

df2
     A
0  2.5
1  4.5
2  3.5

有几种方法可以直接屏蔽这个警告:

(推荐)使用loc对子集进行切片: Df2 = df。loc [: [A]] df2['A'] /= 2 #不提升 改变pd.options.mode.chained_assignment 可以设置为None、warn或raise。“warn”是默认值。None将完全抑制警告,“raise”将抛出SettingWithCopyError,阻止操作进行。 pd.options.mode。chained_assignment =无 df2['A'] /= 2 制作深度拷贝 df2 = df[['A']]].copy(depth =True) df2['A'] /= 2

@Peter Cotton在评论中提出了一个很好的方法,使用上下文管理器非侵入性地改变模式(从这个要点修改),只在需要时设置模式,并在完成时将其重置回原始状态。

类ChainedAssignent: def __init__(self, chained=None): accept = [None, 'warn', 'raise'] Assert chained in acceptable, "chained must be in " + str(acceptable) 自我。被链住 def __enter__(自我): 自我。Saved_swcw = pd.options.mode.chained_assignment pd.options.mode。Chained_assignment = self.swcw 回归自我 Def __exit__(self, *args): pd.options.mode。Chained_assignment = self.saved_swcw

用法如下:

# Some code here
with ChainedAssignent():
    df2['A'] /= 2
# More code follows

或者,抛出异常

with ChainedAssignent(chained='raise'):
    df2['A'] /= 2

SettingWithCopyError:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

“XY问题”:我做错了什么?

很多时候,用户试图寻找抑制这种异常的方法,而没有完全理解为什么会出现这种异常。这是XY问题的一个很好的例子,用户试图解决一个问题“Y”,而这个问题实际上是一个更深层次的问题“X”的症状。将根据遇到此警告的常见问题提出问题,然后将提出解决方案。

问题1 我有一个数据框架 df A bc d e 0 5 0 3 3 7 1 9 3 5 2 4 2 7 6 8 8 1 我想在col“A”> 5到1000中赋值。我的期望输出是 A bc d e 0 5 0 3 3 7 1 1000 3 5 2 4 2 1000 6 8 8 1

错误的做法:

df.A[df.A > 5] = 1000         # works, because df.A returns a view
df[df.A > 5]['A'] = 1000      # does not work
df.loc[df.A > 5]['A'] = 1000   # does not work

使用loc的正确方法:

df.loc[df.A > 5, 'A'] = 1000

问题21 我试图将单元格(1,'D')中的值设置为12345。我的期望输出是 A bc d e 0 5 0 3 3 7 1 9 3 5 1245 4 2 7 6 8 8 1 我试过各种方法进入这个细胞,比如 df [' D '][1]。最好的方法是什么? 1. 这个问题和警告没有特别的关系,但是 最好能理解如何正确地执行这个特定的操作 这样就可以避免出现警告可能出现的情况 的未来。

您可以使用以下任何一种方法来做到这一点。

df.loc[1, 'D'] = 12345
df.iloc[1, 3] = 12345
df.at[1, 'D'] = 12345
df.iat[1, 3] = 12345

问题3 我正在尝试基于某些条件的子集值。我有一个 DataFrame A bc d e 1 9 3 5 2 4 2 7 6 8 8 1 我想把“D”中的值赋给123,这样“C”== 5。我 试着 df2.loc[df2.C == 5, 'D'] = 123 这看起来很好,但我还是得到了 SettingWithCopyWarning !我怎么解决这个问题?

这实际上可能是因为管道中更高级别的代码。你是从更大的东西中创建df2的吗

df2 = df[df.A > 5]

? 在本例中,布尔索引将返回一个视图,因此df2将引用原始视图。你需要做的是将df2分配给一个副本:

df2 = df[df.A > 5].copy()
# Or,
# df2 = df.loc[df.A > 5, :]

问题4 我要把C列放到 A bc d e 1 9 3 5 2 4 2 7 6 8 8 1 但使用 df2。drop('C', axis=1, inplace=True) 抛出SettingWithCopyWarning。为什么会这样?

这是因为df2必须是作为其他切片操作的视图创建的,例如

df2 = df[df.A > 5]

这里的解决方案是创建df的copy(),或者像以前一样使用loc。

其他回答

如何处理SettingWithCopyWarning在熊猫?

这篇文章的读者是:

想知道这个警告是什么意思吗 想了解压制这种警告的不同方法吗 想了解如何改进他们的代码,并遵循良好的实践,以避免在未来出现这种警告。

设置

np.random.seed(0)
df = pd.DataFrame(np.random.choice(10, (3, 5)), columns=list('ABCDE'))
df
   A  B  C  D  E
0  5  0  3  3  7
1  9  3  5  2  4
2  7  6  8  8  1

什么是SettingWithCopyWarning?

要知道如何处理这个警告,首先要理解它的含义以及为什么会提出这个警告。

过滤dataframe时,可以对帧进行切片/索引以返回视图或副本,这取决于内部布局和各种实现细节。顾名思义,“视图”是原始数据的视图,因此修改视图可能会修改原始对象。另一方面,“副本”是原始数据的复制,修改副本对原始数据没有影响。

正如其他答案所提到的,SettingWithCopyWarning被创建来标记“链式赋值”操作。考虑上面设置中的df。假设您想要选择列“B”中的所有值,其中列“A”中的值为> 5。Pandas允许您以不同的方式做到这一点,有些方式比其他方式更正确。例如,

df[df.A > 5]['B']

1    3
2    6
Name: B, dtype: int64

And,

df.loc[df.A > 5, 'B']

1    3
2    6
Name: B, dtype: int64

它们返回相同的结果,因此如果只读取这些值,则没有区别。那么,问题是什么呢?链式赋值的问题是,通常很难预测返回的是视图还是副本,所以当您试图赋值时,这在很大程度上成为一个问题。在前面例子的基础上,考虑一下这段代码是如何被解释器执行的:

df.loc[df.A > 5, 'B'] = 4
# becomes
df.__setitem__((df.A > 5, 'B'), 4)

用一个__setitem__调用df。OTOH,考虑下面的代码:

df[df.A > 5]['B'] = 4
# becomes
df.__getitem__(df.A > 5).__setitem__('B', 4)

现在,根据__getitem__返回的是视图还是副本,__setitem__操作可能无法工作。

一般来说,应该使用loc进行基于标签的赋值,使用iloc进行基于整数/位置的赋值,因为规范保证它们总是对原始值进行操作。此外,要设置单个单元格,应该使用at和iat。

更多信息可以在文档中找到。

请注意 所有用loc完成的布尔索引操作也可以用iloc完成。唯一的区别是iloc希望两者都有 索引的整数/位置或布尔值的numpy数组,以及 列的整数/位置索引。 例如, df.loc (df。A > 5, ' b '] = 4 可以写成nas df.iloc [(df。A > 5).values, 1] = 4 而且, df。loc[1, 'A'] = 100 可以写成 df。Iloc [1,0] = 100 等等。


告诉我怎么消除警告!

考虑df的“a”列上的一个简单操作。选择“A”并除以2将会发出警告,但操作是有效的。

df2 = df[['A']]
df2['A'] /= 2
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/IPython/__main__.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

df2
     A
0  2.5
1  4.5
2  3.5

有几种方法可以直接屏蔽这个警告:

(推荐)使用loc对子集进行切片: Df2 = df。loc [: [A]] df2['A'] /= 2 #不提升 改变pd.options.mode.chained_assignment 可以设置为None、warn或raise。“warn”是默认值。None将完全抑制警告,“raise”将抛出SettingWithCopyError,阻止操作进行。 pd.options.mode。chained_assignment =无 df2['A'] /= 2 制作深度拷贝 df2 = df[['A']]].copy(depth =True) df2['A'] /= 2

@Peter Cotton在评论中提出了一个很好的方法,使用上下文管理器非侵入性地改变模式(从这个要点修改),只在需要时设置模式,并在完成时将其重置回原始状态。

类ChainedAssignent: def __init__(self, chained=None): accept = [None, 'warn', 'raise'] Assert chained in acceptable, "chained must be in " + str(acceptable) 自我。被链住 def __enter__(自我): 自我。Saved_swcw = pd.options.mode.chained_assignment pd.options.mode。Chained_assignment = self.swcw 回归自我 Def __exit__(self, *args): pd.options.mode。Chained_assignment = self.saved_swcw

用法如下:

# Some code here
with ChainedAssignent():
    df2['A'] /= 2
# More code follows

或者,抛出异常

with ChainedAssignent(chained='raise'):
    df2['A'] /= 2

SettingWithCopyError:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

“XY问题”:我做错了什么?

很多时候,用户试图寻找抑制这种异常的方法,而没有完全理解为什么会出现这种异常。这是XY问题的一个很好的例子,用户试图解决一个问题“Y”,而这个问题实际上是一个更深层次的问题“X”的症状。将根据遇到此警告的常见问题提出问题,然后将提出解决方案。

问题1 我有一个数据框架 df A bc d e 0 5 0 3 3 7 1 9 3 5 2 4 2 7 6 8 8 1 我想在col“A”> 5到1000中赋值。我的期望输出是 A bc d e 0 5 0 3 3 7 1 1000 3 5 2 4 2 1000 6 8 8 1

错误的做法:

df.A[df.A > 5] = 1000         # works, because df.A returns a view
df[df.A > 5]['A'] = 1000      # does not work
df.loc[df.A > 5]['A'] = 1000   # does not work

使用loc的正确方法:

df.loc[df.A > 5, 'A'] = 1000

问题21 我试图将单元格(1,'D')中的值设置为12345。我的期望输出是 A bc d e 0 5 0 3 3 7 1 9 3 5 1245 4 2 7 6 8 8 1 我试过各种方法进入这个细胞,比如 df [' D '][1]。最好的方法是什么? 1. 这个问题和警告没有特别的关系,但是 最好能理解如何正确地执行这个特定的操作 这样就可以避免出现警告可能出现的情况 的未来。

您可以使用以下任何一种方法来做到这一点。

df.loc[1, 'D'] = 12345
df.iloc[1, 3] = 12345
df.at[1, 'D'] = 12345
df.iat[1, 3] = 12345

问题3 我正在尝试基于某些条件的子集值。我有一个 DataFrame A bc d e 1 9 3 5 2 4 2 7 6 8 8 1 我想把“D”中的值赋给123,这样“C”== 5。我 试着 df2.loc[df2.C == 5, 'D'] = 123 这看起来很好,但我还是得到了 SettingWithCopyWarning !我怎么解决这个问题?

这实际上可能是因为管道中更高级别的代码。你是从更大的东西中创建df2的吗

df2 = df[df.A > 5]

? 在本例中,布尔索引将返回一个视图,因此df2将引用原始视图。你需要做的是将df2分配给一个副本:

df2 = df[df.A > 5].copy()
# Or,
# df2 = df.loc[df.A > 5, :]

问题4 我要把C列放到 A bc d e 1 9 3 5 2 4 2 7 6 8 8 1 但使用 df2。drop('C', axis=1, inplace=True) 抛出SettingWithCopyWarning。为什么会这样?

这是因为df2必须是作为其他切片操作的视图创建的,例如

df2 = df[df.A > 5]

这里的解决方案是创建df的copy(),或者像以前一样使用loc。

这里我直接回答这个问题。我们该如何应对呢?

在切片后创建.copy(deep=False)。看到pandas.DataFrame.copy。

等等,切片不是会返回副本吗?毕竟,这就是警告信息试图表达的意思?阅读长答案:

import pandas as pd
df = pd.DataFrame({'x':[1,2,3]})

这给出了一个警告:

df0 = df[df.x>2]
df0['foo'] = 'bar'

这不是:

df1 = df[df.x>2].copy(deep=False)
df1['foo'] = 'bar'

df0和df1都是DataFrame对象,但它们的某些不同之处使pandas能够打印警告。让我们来看看它是什么。

import inspect
slice= df[df.x>2]
slice_copy = df[df.x>2].copy(deep=False)
inspect.getmembers(slice)
inspect.getmembers(slice_copy)

使用你选择的diff工具,你会发现除了几个地址之外,唯一的实质性区别是:

|          | slice   | slice_copy |
| _is_copy | weakref | None       |

决定是否警告的方法是DataFrame。_check_setitem_copy检查_is_copy。给你。做一个拷贝,这样你的DataFrame就不是_is_copy。

警告建议使用.loc,但如果您在_is_copy的帧上使用.loc,仍然会得到相同的警告。误导?是的。烦人吗?你的赌注。有用吗?可能,当使用链式赋值时。但是它不能正确地检测链赋值,并且不加区别地输出警告。

对我来说奏效了:

import pandas as pd
# ...
pd.set_option('mode.chained_assignment', None)

对我来说,这个问题发生在下面一个简化的例子中。我也能够解决它(希望有一个正确的解决方案):

带有警告的旧代码:

def update_old_dataframe(old_dataframe, new_dataframe):
    for new_index, new_row in new_dataframe.iterrorws():
        old_dataframe.loc[new_index] = update_row(old_dataframe.loc[new_index], new_row)

def update_row(old_row, new_row):
    for field in [list_of_columns]:
        # line with warning because of chain indexing old_dataframe[new_index][field]
        old_row[field] = new_row[field]
    return old_row

输出old_row[field] = new_row[field]行的警告

因为update_row方法中的行实际上是Series类型,所以我将行替换为:

old_row.at[field] = new_row.at[field]

例如,用于访问/查找一个Series的方法。尽管两者都工作得很好,结果是相同的,这样我就不必禁用警告(=保留它们用于其他地方的其他链索引问题)。

熊猫数据帧拷贝警告

当你这样做的时候:

quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]

熊猫。在这种情况下,Ix返回一个新的、独立的数据框架。

任何你决定在这个数据框架中改变的值,都不会改变原始数据框架。

这就是熊猫想要警告你的。


为什么。ix是个坏主意

.ix对象试图做不止一件事,对于任何读过干净代码的人来说,这是一种强烈的气味。

给定这个数据框架:

df = pd.DataFrame({"a": [1,2,3,4], "b": [1,1,2,2]})

两个行为:

dfcopy = df.ix[:,["a"]]
dfcopy.a.ix[0] = 2

行为一:dfcopy现在是一个独立的数据框架。改变它不会改变df

df.ix[0, "a"] = 3

行为二:这将改变原始的数据框架。


请改用.loc

pandas开发人员意识到.ix对象很臭(推测性的),因此创建了两个新对象来帮助添加和分配数据。(另一个是。iloc)

.loc更快,因为它不尝试创建数据的副本。

.loc的目的是修改现有的数据帧,这是更有效的内存。

.loc是可预测的,它有一个行为。


解决方案

您在代码示例中所做的是加载一个包含许多列的大文件,然后将其修改为较小的文件。

pd。Read_csv函数可以帮助您解决这些问题,并使文件的加载速度更快。

所以不这样做

quote_df = pd.read_csv(StringIO(str_of_all), sep=',', names=list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg')) #dtype={'A': object, 'B': object, 'C': np.float64}
quote_df.rename(columns={'A':'STK', 'B':'TOpen', 'C':'TPCLOSE', 'D':'TPrice', 'E':'THigh', 'F':'TLow', 'I':'TVol', 'J':'TAmt', 'e':'TDate', 'f':'TTime'}, inplace=True)
quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]

这样做

columns = ['STK', 'TPrice', 'TPCLOSE', 'TOpen', 'THigh', 'TLow', 'TVol', 'TAmt', 'TDate', 'TTime']
df = pd.read_csv(StringIO(str_of_all), sep=',', usecols=[0,3,2,1,4,5,8,9,30,31])
df.columns = columns

这将只读取您感兴趣的列,并正确地命名它们。不需要使用邪恶的.ix对象来做神奇的事情。