在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
试试这个
import math
def find_median(arr):
if len(arr)%2==1:
med=math.ceil(len(arr)/2)-1
return arr[med]
else:
return -1
print(find_median([1,2,3,4,5,6,7,8]))
其他回答
一个返回给定列表中值的简单函数:
def median(lst):
lst = sorted(lst) # Sort the list first
if len(lst) % 2 == 0: # Checking if the length is even
# Applying formula which is sum of middle two divided by 2
return (lst[len(lst) // 2] + lst[(len(lst) - 1) // 2]) / 2
else:
# If length is odd then get middle value
return lst[len(lst) // 2]
一些关于中值函数的例子:
>>> median([9, 12, 20, 21, 34, 80]) # Even
20.5
>>> median([9, 12, 80, 21, 34]) # Odd
21
如果你想使用库,你可以简单地做:
>>> import statistics
>>> statistics.median([9, 12, 20, 21, 34, 80]) # Even
20.5
>>> statistics.median([9, 12, 80, 21, 34]) # Odd
21
sorted()函数对此非常有用。使用排序函数 要对列表排序,只需返回中间值(或两个中间值的平均值) 如果列表包含偶数个元素,则为。
def median(lst):
sortedLst = sorted(lst)
lstLen = len(lst)
index = (lstLen - 1) // 2
if (lstLen % 2):
return sortedLst[index]
else:
return (sortedLst[index] + sortedLst[index + 1])/2.0
Python 3.4有statistics.median:
返回数值数据的中位数(中间值)。 当数据点数为奇数时,返回中间的数据点。 当数据点数为偶数时,通过取两个中间值的平均值来插值中位数: >>>中位数([1,3,5]) 3. >>>中位数([1,3,5,7]) 4.0
用法:
import statistics
items = [6, 1, 8, 2, 3]
statistics.median(items)
#>>> 3
它对类型也非常小心:
statistics.median(map(float, items))
#>>> 3.0
from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')
(适用于python-2.x):
def median(lst):
n = len(lst)
s = sorted(lst)
return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None
>>> median([-5, -5, -3, -4, 0, -1])
-3.5
numpy.median ():
>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0
python 3。X,使用statistics.median:
>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0
以下是我在Codecademy的练习中得出的结论:
def median(data):
new_list = sorted(data)
if len(new_list)%2 > 0:
return new_list[len(new_list)/2]
elif len(new_list)%2 == 0:
return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0
print median([1,2,3,4,5,9])