在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

以下是我在Codecademy的练习中得出的结论:

def median(data):
    new_list = sorted(data)
    if len(new_list)%2 > 0:
        return new_list[len(new_list)/2]
    elif len(new_list)%2 == 0:
        return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0

print median([1,2,3,4,5,9])

其他回答

def median(array):
    if len(array) < 1:
        return(None)
    if len(array) % 2 == 0:
        median = (array[len(array)//2-1: len(array)//2+1])
        return sum(median) / len(median)
    else:
        return(array[len(array)//2])

我在“中位数的中位数”算法的Python实现中发布了我的解决方案,这比使用sort()稍微快一点。我的解决方案每列使用15个数字,速度~5N比每列使用5个数字的速度~10N快。最佳速度是~4N,但我可能是错的。

根据Tom在评论中的要求,我在这里添加了我的代码,以供参考。我认为速度的关键部分是每列使用15个数字,而不是5个。

#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random


items_per_column = 15


def find_i_th_smallest( A, i ):
    t = len(A)
    if(t <= items_per_column):
        # if A is a small list with less than items_per_column items, then:
        #
        # 1. do sort on A
        # 2. find i-th smallest item of A
        #
        return sorted(A)[i]
    else:
        # 1. partition A into columns of k items each. k is odd, say 5.
        # 2. find the median of every column
        # 3. put all medians in a new list, say, B
        #
        B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]

        # 4. find M, the median of B
        #
        M = find_i_th_smallest(B, (len(B) - 1)/2)


        # 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
        # 6. find which above set has A's i-th smallest, recursively.
        #
        P1 = [ j for j in A if j < M ]
        if(i < len(P1)):
            return find_i_th_smallest( P1, i)
        P3 = [ j for j in A if j > M ]
        L3 = len(P3)
        if(i < (t - L3)):
            return M
        return find_i_th_smallest( P3, i - (t - L3))


# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])


# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]


# Show the original list
#
# print L


# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]


# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)

一个返回给定列表中值的简单函数:

def median(lst):
    lst = sorted(lst)  # Sort the list first
    if len(lst) % 2 == 0:  # Checking if the length is even
        # Applying formula which is sum of middle two divided by 2
        return (lst[len(lst) // 2] + lst[(len(lst) - 1) // 2]) / 2
    else:
        # If length is odd then get middle value
        return lst[len(lst) // 2]

一些关于中值函数的例子:

>>> median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> median([9, 12, 80, 21, 34])  # Odd
21

如果你想使用库,你可以简单地做:

>>> import statistics
>>> statistics.median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> statistics.median([9, 12, 80, 21, 34])  # Odd
21
import numpy as np
def get_median(xs):
        mid = len(xs) // 2  # Take the mid of the list
        if len(xs) % 2 == 1: # check if the len of list is odd
            return sorted(xs)[mid] #if true then mid will be median after sorting
        else:
            #return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
            return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))

中值函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res