在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
以下是我在Codecademy的练习中得出的结论:
def median(data):
new_list = sorted(data)
if len(new_list)%2 > 0:
return new_list[len(new_list)/2]
elif len(new_list)%2 == 0:
return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0
print median([1,2,3,4,5,9])
其他回答
更普遍的中位数(和百分位数)方法是:
def get_percentile(data, percentile):
# Get the number of observations
cnt=len(data)
# Sort the list
data=sorted(data)
# Determine the split point
i=(cnt-1)*percentile
# Find the `floor` of the split point
diff=i-int(i)
# Return the weighted average of the value above and below the split point
return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)
# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4
# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04
这里有一个更干净的解决方案:
def median(lst):
quotient, remainder = divmod(len(lst), 2)
if remainder:
return sorted(lst)[quotient]
return sum(sorted(lst)[quotient - 1:quotient + 1]) / 2.
注:答案更改为在评论中加入建议。
def median(x):
x = sorted(x)
listlength = len(x)
num = listlength//2
if listlength%2==0:
middlenum = (x[num]+x[num-1])/2
else:
middlenum = x[num]
return middlenum
(适用于python-2.x):
def median(lst):
n = len(lst)
s = sorted(lst)
return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None
>>> median([-5, -5, -3, -4, 0, -1])
-3.5
numpy.median ():
>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0
python 3。X,使用statistics.median:
>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0
import numpy as np
def get_median(xs):
mid = len(xs) // 2 # Take the mid of the list
if len(xs) % 2 == 1: # check if the len of list is odd
return sorted(xs)[mid] #if true then mid will be median after sorting
else:
#return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))