在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

我所做的是:

def median(a):
    a = sorted(a)
    if len(a) / 2 != int:
        return a[len(a) / 2]
    else:
        return (a[len(a) / 2] + a[(len(a) / 2) - 1]) / 2

解释:基本上,如果列表中的项目数量是奇数,则返回中间的数字,否则,如果你是偶数列表的一半,python会自动舍入较大的数字,这样我们就知道在它之前的数字会少一个(因为我们对它进行了排序),我们可以将默认的较大数字和小于它的数字相加,然后除以2得到中位数。

其他回答

sorted()函数对此非常有用。使用排序函数 要对列表排序,只需返回中间值(或两个中间值的平均值) 如果列表包含偶数个元素,则为。

def median(lst):
    sortedLst = sorted(lst)
    lstLen = len(lst)
    index = (lstLen - 1) // 2
   
    if (lstLen % 2):
        return sortedLst[index]
    else:
        return (sortedLst[index] + sortedLst[index + 1])/2.0

我为一组数字定义了一个中值函数

def median(numbers):
    return (sorted(numbers)[int(round((len(numbers) - 1) / 2.0))] + sorted(numbers)[int(round((len(numbers) - 1) // 2.0))]) / 2.0

如果需要更快的平均情况运行时间,可以尝试快速选择算法。Quickselect具有平均(和最佳)情况性能O(n),尽管在糟糕的一天它可能会以O(n²)结束。

下面是一个随机选择枢轴的实现:

import random

def select_nth(n, items):
    pivot = random.choice(items)

    lesser = [item for item in items if item < pivot]
    if len(lesser) > n:
        return select_nth(n, lesser)
    n -= len(lesser)

    numequal = items.count(pivot)
    if numequal > n:
        return pivot
    n -= numequal

    greater = [item for item in items if item > pivot]
    return select_nth(n, greater)

你可以简单地把它变成一个方法来寻找中位数:

def median(items):
    if len(items) % 2:
        return select_nth(len(items)//2, items)

    else:
        left  = select_nth((len(items)-1) // 2, items)
        right = select_nth((len(items)+1) // 2, items)

        return (left + right) / 2

这是非常未优化的,但即使是一个优化的版本也不太可能超过Tim Sort (CPython的内置排序),因为它真的很快。我以前试过,但失败了。

实现它:

def median(numbers):
    """
    Calculate median of a list numbers.
    :param numbers: the numbers to be calculated.
    :return: median value of numbers.

    >>> median([1, 3, 3, 6, 7, 8, 9])
    6
    >>> median([1, 2, 3, 4, 5, 6, 8, 9])
    4.5
    >>> import statistics
    >>> import random
    >>> numbers = random.sample(range(-50, 50), k=100)
    >>> statistics.median(numbers) == median(numbers)
    True
    """
    numbers = sorted(numbers)
    mid_index = len(numbers) // 2
    return (
        (numbers[mid_index] + numbers[mid_index - 1]) / 2 if mid_index % 2 == 0
        else numbers[mid_index]
    )


if __name__ == "__main__":
    from doctest import testmod

    testmod()

来源

def median(x):
    x = sorted(x)
    listlength = len(x) 
    num = listlength//2
    if listlength%2==0:
        middlenum = (x[num]+x[num-1])/2
    else:
        middlenum = x[num]
    return middlenum