在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
我所做的是:
def median(a):
a = sorted(a)
if len(a) / 2 != int:
return a[len(a) / 2]
else:
return (a[len(a) / 2] + a[(len(a) / 2) - 1]) / 2
解释:基本上,如果列表中的项目数量是奇数,则返回中间的数字,否则,如果你是偶数列表的一半,python会自动舍入较大的数字,这样我们就知道在它之前的数字会少一个(因为我们对它进行了排序),我们可以将默认的较大数字和小于它的数字相加,然后除以2得到中位数。
其他回答
sorted()函数对此非常有用。使用排序函数 要对列表排序,只需返回中间值(或两个中间值的平均值) 如果列表包含偶数个元素,则为。
def median(lst):
sortedLst = sorted(lst)
lstLen = len(lst)
index = (lstLen - 1) // 2
if (lstLen % 2):
return sortedLst[index]
else:
return (sortedLst[index] + sortedLst[index + 1])/2.0
我为一组数字定义了一个中值函数
def median(numbers):
return (sorted(numbers)[int(round((len(numbers) - 1) / 2.0))] + sorted(numbers)[int(round((len(numbers) - 1) // 2.0))]) / 2.0
如果需要更快的平均情况运行时间,可以尝试快速选择算法。Quickselect具有平均(和最佳)情况性能O(n),尽管在糟糕的一天它可能会以O(n²)结束。
下面是一个随机选择枢轴的实现:
import random
def select_nth(n, items):
pivot = random.choice(items)
lesser = [item for item in items if item < pivot]
if len(lesser) > n:
return select_nth(n, lesser)
n -= len(lesser)
numequal = items.count(pivot)
if numequal > n:
return pivot
n -= numequal
greater = [item for item in items if item > pivot]
return select_nth(n, greater)
你可以简单地把它变成一个方法来寻找中位数:
def median(items):
if len(items) % 2:
return select_nth(len(items)//2, items)
else:
left = select_nth((len(items)-1) // 2, items)
right = select_nth((len(items)+1) // 2, items)
return (left + right) / 2
这是非常未优化的,但即使是一个优化的版本也不太可能超过Tim Sort (CPython的内置排序),因为它真的很快。我以前试过,但失败了。
实现它:
def median(numbers):
"""
Calculate median of a list numbers.
:param numbers: the numbers to be calculated.
:return: median value of numbers.
>>> median([1, 3, 3, 6, 7, 8, 9])
6
>>> median([1, 2, 3, 4, 5, 6, 8, 9])
4.5
>>> import statistics
>>> import random
>>> numbers = random.sample(range(-50, 50), k=100)
>>> statistics.median(numbers) == median(numbers)
True
"""
numbers = sorted(numbers)
mid_index = len(numbers) // 2
return (
(numbers[mid_index] + numbers[mid_index - 1]) / 2 if mid_index % 2 == 0
else numbers[mid_index]
)
if __name__ == "__main__":
from doctest import testmod
testmod()
来源
def median(x):
x = sorted(x)
listlength = len(x)
num = listlength//2
if listlength%2==0:
middlenum = (x[num]+x[num-1])/2
else:
middlenum = x[num]
return middlenum