在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

我所做的是:

def median(a):
    a = sorted(a)
    if len(a) / 2 != int:
        return a[len(a) / 2]
    else:
        return (a[len(a) / 2] + a[(len(a) / 2) - 1]) / 2

解释:基本上,如果列表中的项目数量是奇数,则返回中间的数字,否则,如果你是偶数列表的一半,python会自动舍入较大的数字,这样我们就知道在它之前的数字会少一个(因为我们对它进行了排序),我们可以将默认的较大数字和小于它的数字相加,然后除以2得到中位数。

其他回答

def midme(list1):

    list1.sort()
    if len(list1)%2>0:
            x = list1[int((len(list1)/2))]
    else:
            x = ((list1[int((len(list1)/2))-1])+(list1[int(((len(list1)/2)))]))/2
    return x


midme([4,5,1,7,2])

如果需要更快的平均情况运行时间,可以尝试快速选择算法。Quickselect具有平均(和最佳)情况性能O(n),尽管在糟糕的一天它可能会以O(n²)结束。

下面是一个随机选择枢轴的实现:

import random

def select_nth(n, items):
    pivot = random.choice(items)

    lesser = [item for item in items if item < pivot]
    if len(lesser) > n:
        return select_nth(n, lesser)
    n -= len(lesser)

    numequal = items.count(pivot)
    if numequal > n:
        return pivot
    n -= numequal

    greater = [item for item in items if item > pivot]
    return select_nth(n, greater)

你可以简单地把它变成一个方法来寻找中位数:

def median(items):
    if len(items) % 2:
        return select_nth(len(items)//2, items)

    else:
        left  = select_nth((len(items)-1) // 2, items)
        right = select_nth((len(items)+1) // 2, items)

        return (left + right) / 2

这是非常未优化的,但即使是一个优化的版本也不太可能超过Tim Sort (CPython的内置排序),因为它真的很快。我以前试过,但失败了。

中值函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

下面是不使用中值函数就能找到中值的乏味方法:

def median(*arg):
    order(arg)
    numArg = len(arg)
    half = int(numArg/2)
    if numArg/2 ==half:
        print((arg[half-1]+arg[half])/2)
    else:
        print(int(arg[half]))

def order(tup):
    ordered = [tup[i] for i in range(len(tup))]
    test(ordered)
    while(test(ordered)):
        test(ordered)
    print(ordered)


def test(ordered):
    whileloop = 0 
    for i in range(len(ordered)-1):
        print(i)
        if (ordered[i]>ordered[i+1]):
            print(str(ordered[i]) + ' is greater than ' + str(ordered[i+1]))
            original = ordered[i+1]
            ordered[i+1]=ordered[i]
            ordered[i]=original
            whileloop = 1 #run the loop again if you had to switch values
    return whileloop

更普遍的中位数(和百分位数)方法是:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04