在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

中值函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

其他回答

我在浮点值列表中遇到了一些问题。我最终使用了来自python3统计数据的代码片段。中位数和工作完美的浮动值没有导入。源

def calculateMedian(list):
    data = sorted(list)
    n = len(data)
    if n == 0:
        return None
    if n % 2 == 1:
        return data[n // 2]
    else:
        i = n // 2
        return (data[i - 1] + data[i]) / 2

我为一组数字定义了一个中值函数

def median(numbers):
    return (sorted(numbers)[int(round((len(numbers) - 1) / 2.0))] + sorted(numbers)[int(round((len(numbers) - 1) // 2.0))]) / 2.0

Python 3.4有statistics.median:

返回数值数据的中位数(中间值)。 当数据点数为奇数时,返回中间的数据点。 当数据点数为偶数时,通过取两个中间值的平均值来插值中位数: >>>中位数([1,3,5]) 3. >>>中位数([1,3,5,7]) 4.0

用法:

import statistics

items = [6, 1, 8, 2, 3]

statistics.median(items)
#>>> 3

它对类型也非常小心:

statistics.median(map(float, items))
#>>> 3.0

from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')

(适用于python-2.x):

def median(lst):
    n = len(lst)
    s = sorted(lst)
    return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None

>>> median([-5, -5, -3, -4, 0, -1])
-3.5

numpy.median ():

>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0

python 3。X,使用statistics.median:

>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0

更普遍的中位数(和百分位数)方法是:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04