在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

这很简单;

def median(alist):
    #to find median you will have to sort the list first
    sList = sorted(alist)
    first = 0
    last = len(sList)-1
    midpoint = (first + last)//2
    return midpoint

你可以这样使用返回值median = median(anyList)

其他回答

只要两行就够了。

def get_median(arr):
    '''
    Calculate the median of a sequence.
    :param arr: list
    :return: int or float
    '''
    arr = sorted(arr)
    return arr[len(arr)//2] if len(arr) % 2 else (arr[len(arr)//2] + arr[len(arr)//2-1])/2

sorted()函数对此非常有用。使用排序函数 要对列表排序,只需返回中间值(或两个中间值的平均值) 如果列表包含偶数个元素,则为。

def median(lst):
    sortedLst = sorted(lst)
    lstLen = len(lst)
    index = (lstLen - 1) // 2
   
    if (lstLen % 2):
        return sortedLst[index]
    else:
        return (sortedLst[index] + sortedLst[index + 1])/2.0

实现它:

def median(numbers):
    """
    Calculate median of a list numbers.
    :param numbers: the numbers to be calculated.
    :return: median value of numbers.

    >>> median([1, 3, 3, 6, 7, 8, 9])
    6
    >>> median([1, 2, 3, 4, 5, 6, 8, 9])
    4.5
    >>> import statistics
    >>> import random
    >>> numbers = random.sample(range(-50, 50), k=100)
    >>> statistics.median(numbers) == median(numbers)
    True
    """
    numbers = sorted(numbers)
    mid_index = len(numbers) // 2
    return (
        (numbers[mid_index] + numbers[mid_index - 1]) / 2 if mid_index % 2 == 0
        else numbers[mid_index]
    )


if __name__ == "__main__":
    from doctest import testmod

    testmod()

来源

你可以使用这个列表。排序以避免创建已排序的新列表,并对列表进行排序。

此外,你不应该使用list作为变量名,因为它会掩盖python自己的列表。

def median(l):
    half = len(l) // 2
    l.sort()
    if not len(l) % 2:
        return (l[half - 1] + l[half]) / 2.0
    return l[half]

更普遍的中位数(和百分位数)方法是:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04