在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
import numpy as np
def get_median(xs):
mid = len(xs) // 2 # Take the mid of the list
if len(xs) % 2 == 1: # check if the len of list is odd
return sorted(xs)[mid] #if true then mid will be median after sorting
else:
#return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))
其他回答
(适用于python-2.x):
def median(lst):
n = len(lst)
s = sorted(lst)
return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None
>>> median([-5, -5, -3, -4, 0, -1])
-3.5
numpy.median ():
>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0
python 3。X,使用statistics.median:
>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0
我在“中位数的中位数”算法的Python实现中发布了我的解决方案,这比使用sort()稍微快一点。我的解决方案每列使用15个数字,速度~5N比每列使用5个数字的速度~10N快。最佳速度是~4N,但我可能是错的。
根据Tom在评论中的要求,我在这里添加了我的代码,以供参考。我认为速度的关键部分是每列使用15个数字,而不是5个。
#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random
items_per_column = 15
def find_i_th_smallest( A, i ):
t = len(A)
if(t <= items_per_column):
# if A is a small list with less than items_per_column items, then:
#
# 1. do sort on A
# 2. find i-th smallest item of A
#
return sorted(A)[i]
else:
# 1. partition A into columns of k items each. k is odd, say 5.
# 2. find the median of every column
# 3. put all medians in a new list, say, B
#
B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]
# 4. find M, the median of B
#
M = find_i_th_smallest(B, (len(B) - 1)/2)
# 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
# 6. find which above set has A's i-th smallest, recursively.
#
P1 = [ j for j in A if j < M ]
if(i < len(P1)):
return find_i_th_smallest( P1, i)
P3 = [ j for j in A if j > M ]
L3 = len(P3)
if(i < (t - L3)):
return M
return find_i_th_smallest( P3, i - (t - L3))
# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])
# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]
# Show the original list
#
# print L
# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]
# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)
简单地说,创建一个中值函数,参数为数字列表,并调用该函数。
def median(l):
l = sorted(l)
lent = len(l)
if (lent % 2) == 0:
m = int(lent / 2)
result = l[m]
else:
m = int(float(lent / 2) - 0.5)
result = l[m]
return result
我所做的是:
def median(a):
a = sorted(a)
if len(a) / 2 != int:
return a[len(a) / 2]
else:
return (a[len(a) / 2] + a[(len(a) / 2) - 1]) / 2
解释:基本上,如果列表中的项目数量是奇数,则返回中间的数字,否则,如果你是偶数列表的一半,python会自动舍入较大的数字,这样我们就知道在它之前的数字会少一个(因为我们对它进行了排序),我们可以将默认的较大数字和小于它的数字相加,然后除以2得到中位数。
更普遍的中位数(和百分位数)方法是:
def get_percentile(data, percentile):
# Get the number of observations
cnt=len(data)
# Sort the list
data=sorted(data)
# Determine the split point
i=(cnt-1)*percentile
# Find the `floor` of the split point
diff=i-int(i)
# Return the weighted average of the value above and below the split point
return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)
# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4
# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04