在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

这里有一个更干净的解决方案:

def median(lst):
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return sorted(lst)[quotient]
    return sum(sorted(lst)[quotient - 1:quotient + 1]) / 2.

注:答案更改为在评论中加入建议。

其他回答

(适用于python-2.x):

def median(lst):
    n = len(lst)
    s = sorted(lst)
    return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None

>>> median([-5, -5, -3, -4, 0, -1])
-3.5

numpy.median ():

>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0

python 3。X,使用statistics.median:

>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0

中值函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

只要两行就够了。

def get_median(arr):
    '''
    Calculate the median of a sequence.
    :param arr: list
    :return: int or float
    '''
    arr = sorted(arr)
    return arr[len(arr)//2] if len(arr) % 2 else (arr[len(arr)//2] + arr[len(arr)//2-1])/2

我在“中位数的中位数”算法的Python实现中发布了我的解决方案,这比使用sort()稍微快一点。我的解决方案每列使用15个数字,速度~5N比每列使用5个数字的速度~10N快。最佳速度是~4N,但我可能是错的。

根据Tom在评论中的要求,我在这里添加了我的代码,以供参考。我认为速度的关键部分是每列使用15个数字,而不是5个。

#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random


items_per_column = 15


def find_i_th_smallest( A, i ):
    t = len(A)
    if(t <= items_per_column):
        # if A is a small list with less than items_per_column items, then:
        #
        # 1. do sort on A
        # 2. find i-th smallest item of A
        #
        return sorted(A)[i]
    else:
        # 1. partition A into columns of k items each. k is odd, say 5.
        # 2. find the median of every column
        # 3. put all medians in a new list, say, B
        #
        B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]

        # 4. find M, the median of B
        #
        M = find_i_th_smallest(B, (len(B) - 1)/2)


        # 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
        # 6. find which above set has A's i-th smallest, recursively.
        #
        P1 = [ j for j in A if j < M ]
        if(i < len(P1)):
            return find_i_th_smallest( P1, i)
        P3 = [ j for j in A if j > M ]
        L3 = len(P3)
        if(i < (t - L3)):
            return M
        return find_i_th_smallest( P3, i - (t - L3))


# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])


# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]


# Show the original list
#
# print L


# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]


# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)

Python 3.4有statistics.median:

返回数值数据的中位数(中间值)。 当数据点数为奇数时,返回中间的数据点。 当数据点数为偶数时,通过取两个中间值的平均值来插值中位数: >>>中位数([1,3,5]) 3. >>>中位数([1,3,5,7]) 4.0

用法:

import statistics

items = [6, 1, 8, 2, 3]

statistics.median(items)
#>>> 3

它对类型也非常小心:

statistics.median(map(float, items))
#>>> 3.0

from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')