在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
def median(x):
x = sorted(x)
listlength = len(x)
num = listlength//2
if listlength%2==0:
middlenum = (x[num]+x[num-1])/2
else:
middlenum = x[num]
return middlenum
其他回答
中值函数
def median(midlist):
midlist.sort()
lens = len(midlist)
if lens % 2 != 0:
midl = (lens / 2)
res = midlist[midl]
else:
odd = (lens / 2) -1
ev = (lens / 2)
res = float(midlist[odd] + midlist[ev]) / float(2)
return res
以下是我在Codecademy的练习中得出的结论:
def median(data):
new_list = sorted(data)
if len(new_list)%2 > 0:
return new_list[len(new_list)/2]
elif len(new_list)%2 == 0:
return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0
print median([1,2,3,4,5,9])
Python 3.4有statistics.median:
返回数值数据的中位数(中间值)。 当数据点数为奇数时,返回中间的数据点。 当数据点数为偶数时,通过取两个中间值的平均值来插值中位数: >>>中位数([1,3,5]) 3. >>>中位数([1,3,5,7]) 4.0
用法:
import statistics
items = [6, 1, 8, 2, 3]
statistics.median(items)
#>>> 3
它对类型也非常小心:
statistics.median(map(float, items))
#>>> 3.0
from decimal import Decimal
statistics.median(map(Decimal, items))
#>>> Decimal('3')
下面是不使用中值函数就能找到中值的乏味方法:
def median(*arg):
order(arg)
numArg = len(arg)
half = int(numArg/2)
if numArg/2 ==half:
print((arg[half-1]+arg[half])/2)
else:
print(int(arg[half]))
def order(tup):
ordered = [tup[i] for i in range(len(tup))]
test(ordered)
while(test(ordered)):
test(ordered)
print(ordered)
def test(ordered):
whileloop = 0
for i in range(len(ordered)-1):
print(i)
if (ordered[i]>ordered[i+1]):
print(str(ordered[i]) + ' is greater than ' + str(ordered[i+1]))
original = ordered[i+1]
ordered[i+1]=ordered[i]
ordered[i]=original
whileloop = 1 #run the loop again if you had to switch values
return whileloop
我在“中位数的中位数”算法的Python实现中发布了我的解决方案,这比使用sort()稍微快一点。我的解决方案每列使用15个数字,速度~5N比每列使用5个数字的速度~10N快。最佳速度是~4N,但我可能是错的。
根据Tom在评论中的要求,我在这里添加了我的代码,以供参考。我认为速度的关键部分是每列使用15个数字,而不是5个。
#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random
items_per_column = 15
def find_i_th_smallest( A, i ):
t = len(A)
if(t <= items_per_column):
# if A is a small list with less than items_per_column items, then:
#
# 1. do sort on A
# 2. find i-th smallest item of A
#
return sorted(A)[i]
else:
# 1. partition A into columns of k items each. k is odd, say 5.
# 2. find the median of every column
# 3. put all medians in a new list, say, B
#
B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]
# 4. find M, the median of B
#
M = find_i_th_smallest(B, (len(B) - 1)/2)
# 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
# 6. find which above set has A's i-th smallest, recursively.
#
P1 = [ j for j in A if j < M ]
if(i < len(P1)):
return find_i_th_smallest( P1, i)
P3 = [ j for j in A if j > M ]
L3 = len(P3)
if(i < (t - L3)):
return M
return find_i_th_smallest( P3, i - (t - L3))
# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])
# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]
# Show the original list
#
# print L
# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]
# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)