在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。
如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。
以下是一些例子(为了便于展示,进行了排序):
median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2
当前回答
我在浮点值列表中遇到了一些问题。我最终使用了来自python3统计数据的代码片段。中位数和工作完美的浮动值没有导入。源
def calculateMedian(list):
data = sorted(list)
n = len(data)
if n == 0:
return None
if n % 2 == 1:
return data[n // 2]
else:
i = n // 2
return (data[i - 1] + data[i]) / 2
其他回答
如果您需要关于列表分布的额外信息,百分位数方法可能会很有用。中位数对应于列表的第50个百分位数:
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
median_value = np.percentile(a, 50) # return 50th percentile
print median_value
如果需要更快的平均情况运行时间,可以尝试快速选择算法。Quickselect具有平均(和最佳)情况性能O(n),尽管在糟糕的一天它可能会以O(n²)结束。
下面是一个随机选择枢轴的实现:
import random
def select_nth(n, items):
pivot = random.choice(items)
lesser = [item for item in items if item < pivot]
if len(lesser) > n:
return select_nth(n, lesser)
n -= len(lesser)
numequal = items.count(pivot)
if numequal > n:
return pivot
n -= numequal
greater = [item for item in items if item > pivot]
return select_nth(n, greater)
你可以简单地把它变成一个方法来寻找中位数:
def median(items):
if len(items) % 2:
return select_nth(len(items)//2, items)
else:
left = select_nth((len(items)-1) // 2, items)
right = select_nth((len(items)+1) // 2, items)
return (left + right) / 2
这是非常未优化的,但即使是一个优化的版本也不太可能超过Tim Sort (CPython的内置排序),因为它真的很快。我以前试过,但失败了。
试试这个
import math
def find_median(arr):
if len(arr)%2==1:
med=math.ceil(len(arr)/2)-1
return arr[med]
else:
return -1
print(find_median([1,2,3,4,5,6,7,8]))
sorted()函数对此非常有用。使用排序函数 要对列表排序,只需返回中间值(或两个中间值的平均值) 如果列表包含偶数个元素,则为。
def median(lst):
sortedLst = sorted(lst)
lstLen = len(lst)
index = (lstLen - 1) // 2
if (lstLen % 2):
return sortedLst[index]
else:
return (sortedLst[index] + sortedLst[index + 1])/2.0
以下是我在Codecademy的练习中得出的结论:
def median(data):
new_list = sorted(data)
if len(new_list)%2 > 0:
return new_list[len(new_list)/2]
elif len(new_list)%2 == 0:
return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0
print median([1,2,3,4,5,9])